Explanation:
Given parameters:
Mass of Neil Armstrong = 160kg
Gravitational pull of earth = 10N/kg
Moon's pull = 17% of the earth's pull
Unknown:
Difference between Armstrong's weight on moon and on earth.
Solution:
To find the weight,
Weight = mass x acceleration due to gravity = mg
Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg
Weight on moon = 160 x 1.7 = 272N
Weight on earth = 160 x 10 = 1600N
The difference in weight = 1600 - 272 = 1328N
The weight of Armstrong on earth is 1328N more than on the moon.
Learn more:
Weight and mass brainly.com/question/5956881
#learnwithBrainly
Answer:
<h2>135,000 J</h2>
Explanation:
The work done by an object can be found by using the formula
workdone = force × distance
From the question we have
workdone = 900 × 150
We have the final answer as
<h3>135,000 J</h3>
Hope this helps you
Answer:
The initial energy level = 6
Explanation:
Photon wavelength is proportional to energy. The wavelength of emitted photons is related to the energy levels of the atom as given by the Rydberg formula:
ₕ₁₂
(1/λ) = Rₕ [(1/n₂²) − (1/n₁²)]
where n₂ = final energy level = 2
n₁ = initial energy level = ?
Rₕ = Rydberg's constant = 1.097 × 10⁷ m⁻¹
λ = wavelength = 410 nm = 410 × 10⁻⁹ m
1/(410 × 10⁻⁹) = (1.097 × 10⁷) [(1/2²) − (1/n₁²)]
0.223 = [(1/4) − (1/n₁²)]
(1/n₁²) = 0.02778
n₁² = 1/0.02778 = 36
n₁ = 6.
Answer: 704
Explanation:Vi = 0 m/s
vf = 65 m/s
a = 3 m/s2
d = ??
vf2 = vi2 + 2*a*d
(65 m/s)2 = (0 m/s)2 + 2*(3 m/s2)*d
4225 m2/s2 = (0 m/s)2 + (6 m/s2)*d
(4225 m 2/m2)/(6 m/s2) = d
d = 704 m