1) 29.5 N/m
2) 0.100 m
Explanation:
1)
The force constant of the spring can be found by using the fact that the force on the spring is proportional to the extension of the spring (Hooke's Law). Therefore, we can write:

where
is the change in the force on the spring, where
is the force applied when the hanging mass is

is the force applied when the hanging mass is

is the change in extension of the spring, where
is the extension of the spring when the hanging mass is 0.300 kg
is the extension of the spring when the hanging mass is 1.95 kg
Solving for k,

2)
When the first mass is hanging on the spring, we have

where:
is the force applied on the spring (the weight of the hanging mass)
k is the spring constant
is the extension of the spring wrt its natural length
is the natural length of the spring (the unloaded length)
Here we have

k = 29.5 N/m

Solving for
, we find:

A. The IV is the temperature of gas in the balloon.
B. The DV is the volume of the balloon.
This is because the temperature of the gas is the variable being manipulated in the experiment (Independent) and the volume is changing based on the shifts of the temperature (thus volume is Dependent).
Answer:
the required minimum magnitude of the force F is 21 N
Explanation:
Given the data in the question,
m = 5 kg
width = 60 cm
height = 80 cm
Let force is F represent in the image below,
so when the block about to rotate normal shifted to edge of cube
mg(w/2) = Fh
F = mg(w/2) / h
we know that g = 9.8 m/s²
we substitute
F = (5 × 9.8 ( 60/2)) / 70
F = (5 × 9.8 × 30 ) / 70
F = 1470 / 70
F = 21 N
Therefore, the required minimum magnitude of the force F is 21 N
When you put ice in the freezer, the water expands when in gets cold.
the sidewalks have cracks in them to make room for the expansion and contraction when it heats up and cools down.
as you drive a car, the heat from combustion causes metal to expand. when you turn the car off, the metal cools down and contracts
Gravity affet everything and it touches nothing.
Hope this helps!