Flammability is a chemical change because when you burn something, it no longer has the same properties.
The balanced reaction equation for the reaction between CH₃OH and O₂ is
2CH₃OH(l) + 3O₂(g) → 2CO₂(g) + 4H₂O(l)
Initial moles 12 24
Reacted moles 12 18
Final moles - 6 12 24
The stoichiometric ratio between CH₃OH and O₂ is 2 : 3
Hence,
reacted moles of O₂ = reacted moles of CH₃OH x (3/2)
= 12 mol x 3 / 2
= 18 mol
All of CH₃OH moles react with O₂.
Hence, the limiting agent is CH₃OH.
Excess reagent is O₂.
Amount of moles of excess reagent left = 24 - 18 mol = 6 mol
Answer:
a. Cyclohexanone
Explanation:
The principle of IR technique is based on the <u>vibration of the bonds</u> by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is <em>a specific energy that generates a specific vibration</em>. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.
Now, we must remember that the <u>lower the wavenumber we will have less energy</u>. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.
If we look at the structure of all the molecules we will find that in the last three we have <u>heteroatoms</u> (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of <u>resonance structures</u> which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.
The molecule that fulfills this condition is the <u>cyclohexanone.</u>
See figure 1
I hope it helps!
Answer:
I saw B, he vented SUS
Explanation:
Iodoethane Is the answer.