Answer:
When an electric field exists in a conductor a current will flow.
This implies a voltage difference between two points on the conductor.
Electrostatics pertains to static charge distributions.
That means that an object such as a charged spherical conductor will be at the same potential (voltage) on both its outer and inner surfaces.
There are three types of heat conduction through substances. These are named as conduction,convection and radiation .here we have been given convection.
Convection is the type of mode of conduction of heat in which heat will flow though a liquid and gases due to the direct physical movement of particles.In this process the hotter particles will go upward as they become lighter and cooler,heavier particles come downward which after being heated up go upward .Hence a convectional current is formed for which whole of the liquid or gas gets heated.
There are different life examples of convection.
One may take an simple example of water in a container.The water molecules which are present bottom part of the container will be heated up first and go upward.The upper particles will come downward and they will constitute a convectional current.
Another life example is the flow of wind from one region to another region.the air at hotter region will become lighter and goes upward and the wind starts flowing from cold region region in order to occupy the vacant space.
Another example is the hot air balloon rising up..It is also another example of convection of heat
Time taken by the bowling ball to reach its highest point= 0.214 s
initial velocity= Vi=2.1 m/s
Final velocity= Vf=0 as the velocity at the highest point is zero.
acceleration= g= -9.8 m/s²
using the kinematic equation Vf= Vi + at
0= 2.1 + (-9.8)t
t= -2.1/-9.8
t=0.214 s
Thus the time taken by the bowling ball to reach its highest point is 0.214 s
3.86 m/s^2 is the value of gravity on this large, but low-density, world.
given :
Kepler-12b
diameter= 1.7 times of Jupiter (R_Jupiter = 6.99 × 10^7 m),
mass = 0.43 Jupiter (M_Jupiter = 1.90 × 10^27 kg ).
g = GM/r^2
g = 6.67×10^-11 × 0.43×1.9×10^27/( 1.7×6.99×10^7)^2
g = 3.859 ~ 3.86 m/s^2
Gravity, also referred to as gravitation, is the unchanging force of attraction that binds all matter together in mechanics. It is by far the weakest known force in nature, so it has no effect on determining the internal properties of common matter.
On Earth, everything has weight, or a gravitational pull that is imposed by the planet's mass and proportional to the object's mass. A measure of the force of gravity is the acceleration that freely falling objects experience. At the surface of the Earth, gravity accelerates at a rate of about 9.8 meters per second. As a result, an object's speed increases during free fall by about 9.8 meters per second. At the Moon's surface, a freely falling body accelerates to about 1.6 m/s2.
To know more about gravity visit : brainly.com/question/14428640
#SPJ4
To solve this problem we will apply the concepts related to destructive interference from double-slit experiments. For this purpose we will define the path difference as,

Here,
= Wavelength
= Angle when occurs the interference point of destructive interference
Our values are given as,


Using the previous expression we have,





Therefore the distance between the two openings is 