Answer:
53.13 °
Explanation:
In order to do this, we just need to apply the following:
tanα = Dy/Dx
Where:
Vy: speed of the ball in the y axis.
Vx: speed of the ball in the x axis.
At this point we do not need the speed of the first ball after the collision because in that moment is already heading in the direction that we are looking for. Therefore, we just need to use the innitial data to calculate the direction which the first ball will go.
According to this, then:
tanα = (40/30)
tanα = 1.3333
α = tan⁻¹(1.3333)
<h2>
α = 53.13°</h2>
This means that the final direction of the first ball is 53.13° and in the x axis because the starting momentum of this ball in the x axis has not dissapeared.
Hope this helps
Temperature is the energy
Energy in a machine can be something technical like a wire or something went wrong with the system
200N is the answer (at least thats what I think)
To solve this problem we will define the order of magnitude of both points, then we will obtain the radius and obtain the conclusion of the order of magnitude.
A nanosecond is one billionth of a second while and a millisecond is one millionth of a second

Therefore something that runs in nanoseconds is six times faster than something that runs in milliseconds