Answer:
<h2><em>
15.00124mmHg</em></h2>
Explanation:
Pressure is defined as the ratio of force applied to an object to its area.
Pressure = Force/Area
Given parameters
Force = 0.242N
Area = 1.21cm²
Required parameters
Pressure = 0.242/1.21
Pressure = 0.2N/cm²
Using the conversion to convert the pressure to mmHg
1N/cm² = 75.0062mmHg
0.2N/cm² = y
y = 0.2 * 75.0062
y = 15.00124mmHg
<em>Hence the pressure in mmHg is 15.00124mmHg</em>
To perform a drug lookup to ensure that the new compound has been added to the computer system properly we have to select the new from the toolbar at the top of the screen
<h3>What is a computer system?</h3>
A computer system is a collection of computers, related hardware, and related software. The central processing unit (CPU), memory, input/output, and storage devices are the four main components of a computer system. To produce the desired result, all of these parts operate in concert as a single unit.
Selecting the new from the toolbar at the top of the screen will allow us to run a drug lookup to make sure the new compound has been properly added to the computer system.
Therefore the correct answer is the option C
Learn more about the computer system here
brainly.com/question/2612067
#SPJ1
Answer:
A) d_o = 20.7 cm
B) h_i = 1.014 m
Explanation:
A) To solve this, we will use the lens equation formula;
1/f = 1/d_o + 1/d_i
Where;
f is focal Length = 20 cm = 0.2
d_o is object distance
d_i is image distance = 6m
1/0.2 = 1/d_o + 1/6
1/d_o = 1/0.2 - 1/6
1/d_o = 4.8333
d_o = 1/4.8333
d_o = 0.207 m
d_o = 20.7 cm
B) to solve this, we will use the magnification equation;
M = h_i/h_o = d_i/d_o
Where;
h_o = 3.5 cm = 0.035 m
d_i = 6 m
d_o = 20.7 cm = 0.207 m
Thus;
h_i = (6/0.207) × 0.035
h_i = 1.014 m
Answer:
From question (a) and (b) the pendulum motion is perpendicular to the force so the normal force will do no work and the tension in the string of the pendulum will not work

And
so

c
An example will be a where a stone is attached to the end of a string and is made to move in a circular motion while keeping the other end of the string in a fixed position
d
A dog walking along a surface which has friction, here the frictional force would acting in the direction of the motion and this would do positive work
Explanation:
Using the "v = f. λ" <span>equation...
Your "v" or </span>velocity = 156.25 meters/second