Answer:
60 km
Explanation:
For an object (or a person, such as in this case) moving at constant speed, the speed is equal to the ratio between the distance travelled and the time taken:

where
v is the speed
d is the distance
t is the time taken
In this case, we have:
v = 120 km/h is the speed
t = 30 min = 0.5 h is the time taken
Therefore, we can rearrange the equation to find the total distance travelled:

Answer:
Vrms = 291 m/s
Explanation:
The root mean square velocity or vrms is the square root of the average square velocity and is. vrms=√3RTM. Where M is equal to the molar mass of the molecule in kg/mol.
Temperature = 365 K
Root mean square velocity = ?
molar mass of oxygen = 16 g/mol.
But xygen gas (O2) is comprised of two oxygen atoms bonded together. Therefore:
molar mass of O2 = 2 x 16
molar mass of O2 = 32 g/mol
Convert this to kg/mol:
molar mass of O2 = 32 g/mol x 1 kg/1000 g
molar mass of O2 = 3.2 x 10-2 kg/mol
Molar mass of Oxygen = 3.2 x 10-2 kg/mol
Vrms = √[3(8.3145 (kg·m2/sec2)/K·mol)(365 K)/3.2 x 10-2 kg/mol]
Vrms = 291 m/s
Answer:
(a) 1767.43 N
(b) 182.45 N
Explanation:
Radius of earth, R = 6450 km
Weight of person, W = 7070 N
mass of person, m = W / g = 7070 / 9.8 = 721.4 kg
(a) h = 6450 km
The value of acceleration due to gravity on height is given by


g' = g / 4 = 9.8 / 4 = 2.45 m/s^2
The weight of the person at such height is
W' = m x g' = 721.4 x 2.45
W' = 1767.43 N
(b) h = 33700 km
The value of acceleration due to gravity on height is given by


g' = g x 0.0258 = 9.8 x 0.0258 = 0.253 m/s^2
The weight of the person at such height is
W' = m x g'
W' = 721.4 x 0.253
W' = 182.45 N
The horizontal displacement of a projectile launched at an angle