Answer:
15.19°, 31.61°, 51.84°
Explanation:
We need to fin the angle for m=1,2,3
We know that the expression for wavelenght is,

Substituting,


Once we have the wavelenght we can find the angle by the equation of the single slit difraction,

Where,
W is the width
m is the integer
the wavelenght
Re-arrange the expression,

For m=1,

For m=2,

For m=3,

<em>The angle of diffraction is directly proportional to the size of the wavelength.</em>
Answer:
smaller one
Explanation:
even though he is moving quicker doesn't mean he will be packing more force in the collision
Explanation:
It is given that,
Focal length of the concave mirror, f = -13.5 cm
Image distance, v = -37.5 cm (in front of mirror)
Let u is the object distance. It can be calculated using the mirror's formula as :



u = -21.09 cm
The magnification of the mirror is given by :


m = -1.77
So, the magnification produced by the mirror is (-1.77). Hence, this is the required solution.
Answer it will move slower:
Explanation: cause the force that’s opposite of it