Answer:
The magnitude of induced emf is 5.4 V
Explanation:
Given:
Magnetic field
T
Area of loop

Time take to reduce loop to zero
sec
To find induced emf we use faraday's law,
Induced emf is given by,

Here minus sign shows lenz law, for finding magnitude of emf we ignore it.
Where
Put the value of flux and find induced emf,


V
Therefore, the magnitude of induced emf is 5.4 V
C. You’re welcome
Leave a like
Mass m = 68 kg
center of gravity from his palms x = 0.7 m
center of gravity from his feet x ' = 1 m
forces exerted by the floor on his palms and feet are F and F ' respectively.
with respect to palms :---------------------
( F*0 ) - (W * x ) + [ F ' * (x+x') ] = 0
-mg*0.7 + F ' * 1.7 = 0 where W = weight = mg
F ' * 1.7 = mg * 0.7
F ' = mg * 0.7 / 1.7
= 68 *9.8 * ( 0.7 / 1.7 )
= 274.4 N
with respect to feet :--------------------
( F ' * 0 ) -( W* x ' ) + [F * ( x + x') ] = 0
-mg*1 + [ F * 1.7 ]= 0
F = mg / 1.7
= 392 N
First let's convert the time in seconds:

The current is defined as the quantity of charge flowing through a certain section of a circuit per unit of time:

Using I=10 A, and

, we can find the amount of charge flown through the hair dryer in this time:

The charge of a single electron is

, so the number of electrons flown through the hair dryer is the total charge divided by the charge of a single electron: