I’m pretty sure it’s in a group (column) of the period table. Hope this helps :)))
Answer:
0.7g of HCl
Explanation:
First, let us write a balanced equation for the reaction between HCl and Al(OH)3.
This is illustrated below:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
Next, let us obtain the masses of Al(OH)3 and HCl that reacted together according to the equation. This can be achieved as shown below:
Molar Mass of Al(OH)3 = 27 + 3(16+1)
= 27 + 3(17) = 27 + 51 = 78g/mol.
Molar Mass of HCl = 1 + 35.5 = 36.5g/mol
Mass of HCl from the balanced equation = 3 x 36.5 = 109.5g
Now we can obtain the mass of HCl that would react with 0.5g of Al(OH)3. This can be achieved as follow:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
From the equation above,
78g of Al(OH)3 reacted with 109.5g of HCl.
Therefore, 0.5g of Al(OH)3 will react with = (0.5 x 109.5)/78 = 0.7g of HCl
Answer:
C.
Explanation:
It’s particle boiling point because the atoms are moving fast around the particle as possible, so there for its C..
The toxic gar expelled from the reaction between gasoline and oxygen in the vehicle's engine is both Carbon dioxide and monoxide
Answer: The molar enthalpy change is 73.04 kJ/mol
Explanation:

moles of HCl= 
As NaOH is in excess 0.0415 moles of HCl reacts with 0.0415 moles of NaOH.
volume of water = 100.0 ml + 50.0 ml = 150.0 ml
density of water = 1.0 g/ml
mass of water = 

q = heat released
m = mass = 150.0 g
c = specific heat = 
= change in temperature = 


Thus 0.0415 mol of HCl produces heat = 3031.3 J
1 mol of HCL produces heat = 
Thus molar enthalpy change is 73.04 kJ/mol