As iron heats up, the arrangement of its atoms changes several times before it melts. ... Iron is magnetic at room temperature, and previous work predicted that iron's magnetism favors its open structure at low temperatures, but at 770 degrees Celsius iron loses its magnetism.
plz mark me as brainliest if this helped
Potential energy is energy due to an object's height above the ground.
Potential energy = mass x gravity x height
Kinetic energy is energy due to the motion of the object.
Kinetic energy = 1/2 x mass x velocity²
1.
The ball is not moving and is at a height above the ground so it has only potential energy.
P.E = 2 x 9.81 x 40
P.E = 784.8 J
2.
The ball is moving and has a height above the Earth's surface so it has both kinetic and potential energy.
P.E = same as part 1 = 784.8 J
K.E = 1/2 x 2 x 5²
K.E = 25 J
3.
The ball has no height above the Earth's surface and is moving so it has only kinetic energy.
K.E = 1/2 x 2 x 10²
K.E = 100 J
4.
50000 = 1/2 x 1000 x v²
v = 10 m/s
5.
39200 = 200 x 9.81 x h
h = 20.0 m
6.
12.5 = 1/2 x 1 x v²
v = 5 m/s
98 = 1 x 9.81 x h
h = 10.0 m
He thought elements that haven't been discovered belonged in the place of the gap. He could also use the atomic mass of the missing elements
The Lewis Structure of HCN is shown below,
Number of Bonding Electrons: In HCN Hydrogen is bonded to Carbon through single bond and Nitrogen is bonded to Carbon through Triple Bond. Single bond is formed by two bonding electrons, while, triple bond is formed by six bonding electrons, Hence,
Number of Bonding Electrons = 8
Number of Non-Bonding Electrons:
In HCN there is only one lone pair of electron present on Nitrogen atom which is not taking part in bonding. Hence,
Number of Non-Bonding Electrons = 2
Result: Number of Bonding Electrons = 8 Number of Non-Bonding Electrons = 2
Answer:
D
Explanation:
This explains how two noble gases molecules can have an attractive force between them.
This force is called as van dar Waals forces.
It plays a fundamental role in fields in as diverse as supramolecular chemistry structural biology .
If no other forces are present, the point at which the force becomes repulsive rather than attractive as two atoms near one another is called the van der Waals contact distance. This results from the electron clouds of two atoms unfavorably coming into contact.[1] It can be shown that van der Waals forces are of the same origin as the Casimir effect, arising from quantum interactions with the zero-point field.[2] The resulting van der Waals forces can be attractive or repulsive.[3] It is also sometimes used loosely as a synonym for the totality of intermolecular forces.[4] The term includes the force between permanent dipoles (Keesom force), the force between a permanent dipole and a corresponding induced dipole (Debye force), and the force between instantaneously induced dipoles