Answer:
If energy is conserved, then the sum of the potential energy and the kinetic energy is a constant.
Assuming the proton starts from rest, so it's kineitc energy is zero, but it has a potential energy, PE equal to:
PE = qV
where q =1.6 x 10^-19 C
and V = 1.00 V
Assuming the proton no longer experiences the potential energy and it is all converted to kinetic energy then:
PE* = 0,
KE* = 1/(2mv^2)
Now since
PE + KE = Total energy =PE* + KE*
Therefore,
qV + 0 = 0 + 1/2mv^2
Or
KE = qV = 1.6 10^-19 J
Answer:
450
Explanation:
Given,
Mass= 100kg
Velocity= 3 m/s
Kinetic Energy= ?
Kinetic Energy= 1/2 mv^2
= 1/2× 100× 3^2
= 1/2× 900
= 450.
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELPED</em><em> </em><em>:</em><em>)</em>
They expend more oxygen. Littler endotherms lose warmth to the earth proportionately speedier than huge endotherms: less warm mass, protecting layers in littler creatures are less successful by dint of being more slender, and more prominent surface region to volume proportion implies snappier radiation of warmth
1.7 x 10^2 N
or 166 N
First you find the vertical component of the weight, which is 9.8*40, (g*m), which is 392 N. You then find the angle between that and the slope, which is 90-25, which is 65. You then multiply the vertical weight by cos(65), to find the component of that that is parallel to the slope. You get 165.666 N
Answer:
(i) W = 8.918 N
(ii) 
(iii) d = 9.1 cm
Explanation:
Part a)
As we know that weight of cube is given as


here we know that



now the mass of the ice cube is given as

now weight is given as

Part b)
Weight of the liquid displaced must be equal to weight of the ice cube
Because as we know that force of buoyancy = weight of the of the liquid displaced

So here volume displaced is given as



Part c)
Let the cube is submerged by distance "d" inside water
So here displaced water weight is given as



so it is submerged by d = 9.1 cm inside water