Answer: low temperature
Explanation:-
S.I or M.K.S is a system for defining physical units as meter, kilogram, second, ampere, kelvin or celcius, candela, and mole together with a set of prefixes to indicate multiplication or division by a power of ten for measuring length, mass, time , current, temperature and amount of substance respectively.
Given :
lake length = 563 kilometers = 
High temperature =
Low temperature =
annual precipitation =762 mm= 
Thus low temperature in units of Fahrenheit is not an S.I unit of measurement.
<span>Starch and
cellulose have the same substance but different structures. They are both
polysaccharides. The basic unit of a polysaccharide is the glucose. Glucose,
which contains carbon, hydrogen, and oxygen, have two forms. The alpha-glucose
with an alcohol group attached to carbon 1 is down and the beta-glucose with
the alcohol group attached to carbon 1 is up. Starch is the alpha-glucose while
cellulose is the beta-glucose. Starches are linked into a straight chain whereas
the cellulose are connected like a pile of stack paper. When the human body
eats starch, it can digest the starch but not the cellulose because it has no
enzyme that can break it down. </span>
Answer:
The expression to calculate the mass of the reactant is 
Explanation:
<em>The amount of heat released is equal to the amount of heat released per gram of reactant times the mass of the reactant.</em> To keep to coherence between units we need to transform 1,080 J to kJ. We do so with proportions:

Then,

Answer:
There is 2.52 kJ of energy released (option 4)
Explanation:
Step 1: Data given
The enthalpy of fusion of methanol (CH3OH) is 3.16 kJ/mol
Mass of methanol = 25.6 grams
Molar mass of methanol = 32.04 g/mol
Step 2: Calculate moles of methanol
Moles methanol = mass methanol / molar mass methanol
Moles methanol = 25.6 grams / 32.04 g/mol
Moles methanol = 0.799 moles
Step 3: Calculate energy transfer
Energy transfer = moles * enthalpy of fusion
Energy = 0.799 moles * 3.16 kJ/mol
Energy = 2.52 kJ released
There is 2.52 kJ of energy released