Answer:
a) The current density ,J = 2.05×10^-5
b) The drift velocity Vd= 1.51×10^-15
Explanation:
The equation for the current density and drift velocity is given by:
J = i/A = (ne)×Vd
Where i= current
A = Are
Vd = drift velocity
e = charge ,q= 1.602 ×10^-19C
n = volume
Given: i = 5.8×10^-10A
Raduis,r = 3mm= 3.0×10^-3m
n = 8.49×10^28m^3
a) Current density, J =( 5.8×10^-10)/[3.142(3.0×10^-3)^2]
J = (5.8×10^-10) /(2.83×10^-5)
J = 2.05 ×10^-5
b) Drift velocity, Vd = J/ (ne)
Vd = (2.05×10^-5)/ (8.49×10^28)(1.602×10^-19)
Vd = (2.05×10^-5)/(1.36 ×10^10)
Vd = 1.51× 10^-5
Answer:
Second Trial satisfy principle of conservation of momentum
Explanation:
Given mass of ball A and ball B
Let mass of ball and
Final velocity of ball
Final velocity of ball
initial velocity of ball
Initial velocity of ball
Momentum after collision
Momentum before collision
Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.
Now,
Plugging each trial in this equation we get,
First Trial
momentum before collision moment after collision
Second Trial
moment before collision moment after collision
Third Trial
momentum before collision moment after collision
Fourth Trial
momentum before collision moment after collision
We can see only Trial- 2 shows the conservation of momentum in a closed system.
Answer:
24k
Explanation:
We multiply by 200V by 24
Answer:
the filling stops when the pressure of the pump equals the pressure of the interior air plus the pressure of the walls.
Explanation:
This exercise asks to describe the inflation situation of a spherical fultball.
Initially the balloon is deflated, therefore the internal pressure is equal to the pressure of the air outside, atmospheric pressure, when it begins to inflate the balloon with a pump this creates a pressure in the inlet valve and as it is greater than the pressure inside, the air enters it, this is repeated in each filling cycle, manual pump.
When the ball is full we have two forces, the one created by the external walls and the one aired by the pressure of the pump, these forces are directed towards the inside, but the air molecules exert a pressure towards the outside, which translates into a force. When these two forces are equal, the pump is no longer able to continue introducing air into the balloon.
Consequently the filling stops when the pressure of the pump equals the pressure of the interior air plus the pressure of the walls.
Answer:
Well, there is a kind of magnet to pick up a coin.. I think you can pick up a needle with one too.. I think safety pins. depending on what its made of though.
Explanation: