Answer:

Explanation:
Here we can use energy conservation
As per energy conservation conditions we know that work done by external source is converted into kinetic energy of the disc
Now we have

now we know that work done is product of force and displacement
so here we have


now for moment of inertia of the disc we will have



now from above equation we will have


Answer:
106.7 N
Explanation:
We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:

where
F is the average force
is the duration of the collision
m is the mass of the ball
v is the final velocity
u is the initial velocity
In this problem:
m = 0.200 kg
u = 20.0 m/s
v = -12.0 m/s

Solving for F,

And since we are interested in the magnitude only,
F = 106.7 N
Answer:
Acceleration of the crate is 0.362 m/s^2.
Explanation:
Given:
Mass of the box, m = 40 kg
Applied force, F = 15 N
Angle at which the force is applied,
= 15°
We have to find the magnitude of the acceleration.
Let the acceleration be "a".
FBD is attached with where we can see the horizontal and vertical component of force.
⇒
and ⇒ 
⇒
⇒ 
⇒ Applying concept of forces.
⇒
⇒ 
⇒
<em> ...Newtons second law Fnet = ma</em>
⇒
⇒ Plugging the values.
⇒
<em>...f is the friction which is zero here.</em>
⇒ 
⇒ 
Magnitude of the acceleration of the crate is 0.362 m/s^2.
When two magnets are brought together, the opposite poles will attract one another, but the like poles will repel one another. This is similar to electric charges. Like charges repel, and unlike charges attract.
pls. mark brainliest am. dyning for it