Answer:
Here's what I get
Explanation:
You have an equilibrium reaction between Fe³⁺/ SCN⁻ and FeSCN²⁺.
When you add AgNO₃, the Ag⁺ reacts with the SCN⁻. It forms a colourless precipitate of Ag(SCN).
Ag⁺(aq) + SCN⁻(aq) ⟶ AcSCN(s)
According to Le Châtelier's Principle, when we apply a stress to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
If you add Ag⁺ to the equilibrium solution, it removes the SCN⁻ [as an Ag(SCN) precipitate].
The system responds by trying to replace the missing SCN⁻:
The Fe(SCN)²⁺ dissociates to form SCN⁻, so the position of equilibrium shifts to the left,
You now have more Fe³⁺ and SCN⁻ and less of the highly coloured Fe(SCN)²⁺ at the new equilibrium.
The deep red colour becomes less intense.
Explanation:
cesium fluoride is one of the compound
Answer:
Populations have genetic variation.
The environment changes.
Organisms must have specific traits in order to survive and reproduce.
Explanation:
Natural selection provides an advantage during an adverse condition for organisms that have a rich genetic variation in their population.
Also, environmental changes induced natural selection whereby organisms must adapt to changes around them.
For organisms to survive, they must have specific traits that gives them a competitive reproductive advantage.
Answer:
Mass = 255 g
Explanation:
Given data:
Number of moles of nitrogen = 7.5 mol
Mass of ammonia formed = ?
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
Now we will compare the moles of nitrogen and ammonia.
N₂ : NH₃
1 : 2
7.5 : 2/1×7.5 = 15
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 15 mol × 17 g/mol
Mass = 255 g
Answer:
Explanation:
Hello,
In this case, we need to remember that for the required time for a radioactive nuclide as radium-226 to decrease to one half its initial amount we are talking about its half-life. Furthermore, the amount of remaining radioactive material as a function of the half-lives is computed as follows:
Therefore, for an initial amount of 100 mg with a half-life of 1590 years, after 1000 years, we have:
Best regards.