Answer:
A decrease in the total volume of the reaction vessel (T constant)
Explanation:
- Le Châtelier's principle predicts that the moles of H2 in the reaction container will increase with a decrease in the total volume of the reaction vessel.
- <em><u>According to the Le Chatelier's principle, when a chnage is a applied to a system at equilibrium, then the equilibrium will shift in a way that counteracts the effect causing it.</u></em>
- In this case, a decrease in volume means there is an increase in pressure, therefore the equilibrium will shift towards the side with the fewer number of moles of gas.
Answer:
Explanation:
Magnetic materials are always made of metal, but not all metals are magnetic. Iron is magnetic, so any metal with iron in it will be attracted to a magnet. Steel contains iron, so a steel paperclip will be attracted to a magnet too. Most other metals, for example aluminium, copper and gold, are NOT magnetic.
Answer:
It is fairly obvious that zinc metal reacts with aqueous hydrochloric acid! The bubbles are hydrogen gas. ... In fact, electrons are being transferred from the zinc atoms to the hydrogen atoms (which ultimately make a molecule of diatomic hydrogen), changing the charges on both elements.
Explanation:
Equation is as follow,
Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂
Oxidation:
3 CO → 3 CO₂
Oxidation state of C in CO is +2, and that in CO₂ is +4. So, carbon has lost 2 electrons per mole and 6 electrons per 3 moles hence,
3 CO → 3 CO₂ + 6 e⁻
Reduction:
Fe₂O₃ → 2 Fe
Oxidation state of Fe in Fe₂O₃ is +3 per atom, and that in Fe is 0. So, Iron has gained 3 electrons per atom and 6 electrons per 2 atoms hence,
Fe₂O₃ + 6e⁻ → 2 Fe
Result:
Iron in Fe₂O₃ has been reduced in this reaction and has played a role of oxidizing agent by oxidizing carbon from +2 state to +4 state.