1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hatshy [7]
1 year ago
15

This lab is investigating the relationship between mass, ________, and momentum.

Physics
1 answer:
Sav [38]1 year ago
7 0

This lab is investigating the relationship between mass, <u>Speed </u>, and momentum.

Momentum is manufactured from the mass and speed of an object. it's miles a vector quantity, owning a significance and a direction. If m is an object's mass and v is its speed, then the object's momentum is p.

Momentum in an easy way is a quantity of movement. right here amount is measurable because if an item is moving and has mass, then it has momentum. If an object no longer flows then it has no momentum. however, in regular existence, it has an important but many people didn't understand it.

Momentum gives the connection between the mass, pace, and direction of an object. Any exchange in momentum results in pressure. So, an exchange in momentum is used to determine the force appearing upon the item.

Learn more about momentum here:-brainly.com/question/1042017

#SPJ1

You might be interested in
You are standing 2.5m directly in front of one of the two loudspeakers. They are 3.0m apart and both are playing a 686Hz tone in
ahrayia [7]

Answer:

distance from speaker is 17.87 m

Explanation:

given data

distance from loudspeaker = 2.5 m

distance between loudspeaker = 3.0 m

room temperature = 20c

wavelength f  = 686Hz

to find out

what distances from the speaker

solution

we know sound velocity c = 331.5  + 0.6 × 20c = 343.5

so wavelength of sound  λ = c / f  

wavelength = 343.5 /  686 = 0.5 m

when the difference in distance of speaker destructive interference will be

d = λ/2 × (2n-1)

for n = 1, 2 3 4 ..

d = 0.5/2 × (2n-1)

d = 0.250 , 0.75 , 1.25 , 1.750............   for n = 1, 2 3 .............

so

for d = 0.250

side of triangle by hypotenuse of triangle are

\sqrt{3^{2}+(2..5+x)^{2} } - (2.5 + x1) = 0.250

0.5 x1 = 7.6875

x1 = 15.375 m

for d = 0.75

side of triangle by hypotenuse of triangle are

\sqrt{3^{2}+(2..5+x)^{2} } - (2.5 + x2) = 0.75

1.5 x2 = 4.6875

x2 = 3.125 m

for d = 1.250

side of triangle by hypotenuse of triangle are

\sqrt{3^{2}+(2..5+x)^{2} } - (2.5 + x3) = 1.250

2.5 x2 = 1.1875

x3 = 0.475 m

for d = 1.750

x4 will be negative so we stop here

so the distance from speaker here is given below

distance = 2.5 + x

here x = 0.475 , 3.125 and 15.375 so

distance 1 = 2.5 + 0.475  = 2.975 m

distance 2 = 2.5 + 3.125  = 5.625 m

distance 3 = 2.5 + 15.375 = 17.875 m

final distance from speaker is 17.87 m

8 0
3 years ago
True or false. there would be no like in earth without the sun
alisha [4.7K]

hello!

True

have a goed day

6 0
3 years ago
The acceleration due to gravity on the surface of Mars is about one-third the acceleration due to gravity on Earth’s surface.
aksik [14]

Answer:

one-third of its weight on Earth's surface

Explanation:

Weight of an object is = W = m*g

Gravity on Earth = g₁ = 9.8 m/s

Gravity on Mars = g₂ = \frac{1}{3} g₁

Weight of probe on earth = w₁ = m * g₁

Weight of probe on Mars = w₂ = m * g₂ -------- ( 1 )

As g₂ = g₁/3 --------- ( 2 )

Put equation (2) in equation (1)

so

Weight of probe on Mars = w₂ = m * g₁ /3

Weight of probe on Mars = \frac{1}{3}  m * g₁ = \frac{1}{3} w₁

⇒Weight of probe on Mars =\frac{1}{3} Weight of probe on earth

6 0
3 years ago
A projectile enters a resisting medium at x = 0 with an initial velocity v0 = 910 ft/s and travels 5 in. before coming to rest.
evablogger [386]

Answer:

a = - 1.987 × 10⁶ ft/s²

t = 6.84 × 10⁻⁴ s

Explanation:

v₀ = 910 ft/s

x = 5 in.

relation v = v₀ - k x

v = 0 as body comes to rest

0 = 900 - 5k/12

k = 2184 s⁻¹

acceleration

\frac{\mathrm{d} v}{\mathrm{d} t} = -k\frac{\mathrm{d} x}{\mathrm{d} t}

where

(A) a = -k × v

 at v= 910 ft/s

     a = - 1.987 × 10⁶ ft/s²

(B)  at x = 3.9 in.

v = 910 - 3.9(2184)/12

v = 200.2 m/s

\frac{\mathrm{d} v}{\mathrm{d} t} = -k\frac{\mathrm{d} x}{\mathrm{d} t}

\frac{dv}{v} = -kdt

\int\limits^{200.2}_{900} {\frac{1}{v} }dv = -k\int\limits^t_0 dt

ln(200.2)-ln(900) = -kt

t = 6.84 × 10⁻⁴ s

3 0
2 years ago
Which of the following statements about energy in systems are true?
oee [108]

Answer:

Laws of Thermodynamics

Energy exists in many forms, such as heat, light, chemical energy, and electrical energy. Energy is the ability to bring about change or to do work. Thermodynamics is the study of energy.

First Law of Thermodynamics: Energy can be changed from one form to another, but it cannot be created or destroyed. The total amount of energy and matter in the Universe remains constant, merely changing from one form to another. The First Law of Thermodynamics (Conservation) states that energy is always conserved, it cannot be created or destroyed. In essence, energy can be converted from one form into another. Click here for another page (developed by Dr. John Pratte, Clayton State Univ., GA) covering thermodynamics.

The Second Law of Thermodynamics states that "in all energy exchanges, if no energy enters or leaves the system, the potential energy of the state will always be less than that of the initial state." This is also commonly referred to as entropy. A watchspring-driven watch will run until the potential energy in the spring is converted, and not again until energy is reapplied to the spring to rewind it. A car that has run out of gas will not run again until you walk 10 miles to a gas station and refuel the car. Once the potential energy locked in carbohydrates is converted into kinetic energy (energy in use or motion), the organism will get no more until energy is input again. In the process of energy transfer, some energy will dissipate as heat. Entropy is a measure of disorder: cells are NOT disordered and so have low entropy. The flow of energy maintains order and life. Entropy wins when organisms cease to take in energy and die.

Potential vs. Kinetic energy

Potential energy, as the name implies, is energy that has not yet been used, thus the term potential. Kinetic energy is energy in use (or motion). A tank of gasoline has a certain potential energy that is converted into kinetic energy by the engine. When the potential is used up, you're outta gas! Batteries, when new or recharged, have a certain potential. When placed into a tape recorder and played at loud volume (the only settings for such things), the potential in the batteries is transformed into kinetic energy to drive the speakers. When the potential energy is all used up, the batteries are dead. In the case of rechargeable batteries, their potential is reelevated or restored.

In the hydrologic cycle, the sun is the ultimate source of energy, evaporating water (in a fashion raising it's potential above water in the ocean). When the water falls as rain (or snow) it begins to run downhill toward sea-level. As the water get closer to sea-level, it's potential energy is decreased. Without the sun, the water would eventually still reach sea-level, but never be evaporated to recharge the cycle.

Chemicals may also be considered from a potential energy or kinetic energy standpoint. One pound of sugar has a certain potential energy. If that pound of sugar is burned the energy is released all at once. The energy released is kinetic energy (heat). So much is released that organisms would burn up if all the energy was released at once. Organisms must release the energy a little bit at a time.

Energy is defined as the ability to do work. Cells convert potential energy, usually in the from of C-C covalent bonds or ATP molecules, into kinetic energy to accomplish cell division, growth, biosynthesis, and active transport, among other things.

Learning Objectives 

These learning objectives are taken from my Biology for Nonmajors class (BIO 102). I have tried to add a link to each that will direct you to a part of this chapter or another website that will facilitate your completion of the objective.

Define energy; be able to state the first and second laws of thermodynamics.

Entropy is a measure of the degree of randomness or disorder of systems. Explain how life maintains a high degree of organization.

8 0
3 years ago
Other questions:
  • The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0 above the horizon
    11·1 answer
  • A car initally at rest accelerates in a straight line at 3 m/s2 what will be its speed after 2 seconds
    12·1 answer
  • When Jacob bats a baseball with a net force of 4.719 N, it accelerates 33 m/s2. What is the mass of the baseball? (Disregard air
    7·1 answer
  • Which of the following should not be held constant during this experiment?
    9·2 answers
  • Which of these experiments would make use of qualitative data?
    15·2 answers
  • What part of Earth is darkest at solstice?why?
    10·2 answers
  • Light incident on a surface at an angle of 45° undergoes diffused reflection at what angle will it reflect?
    12·1 answer
  • PLZ HELP I DONT GET IT
    5·1 answer
  • According to Newton’s first law of motion, a moving object that is not acted on by an unbalanced force will..
    8·2 answers
  • A force of 100 newtons is applied to a box at an angle of 36° with the horizontal. If the mass of the box is 25 kilograms, what
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!