1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
3 years ago
6

What’s the potential difference across a 5.0 ohms resistor that carries a current of 5.0A

Physics
1 answer:
vivado [14]3 years ago
3 0

Answer:

The correct answer is B-25 V

Explanation:

We apply Ohm's Law, according to which:

V = i x R

V = 5A x 5Ω

V= 25 V

Being V the potential difference whose unit is the VOLT, i the current intensity (Ampere) and R the electrical resistance (ohm)

You might be interested in
A certain atom has atomic number Z = 25 and atomic mass number A = 52. a. What is the approximate radius of the nucleus of this
wlad13 [49]

Answer:

a)The approximate radius of the nucleus of this atom is 4.656 fermi.

b) The electrostatic force of repulsion between two protons on opposite sides of the diameter of the nucleus is 2.6527

Explanation:

r=r_o\times A^{\frac{1}{3}}

r_o=1.25 \times 10^{-15} m = Constant for all nuclei

r = Radius of the nucleus

A = Number of nucleons

a) Given atomic number of an element = 25

Atomic mass or nucleon number = 52

r=1.25 \times 10^{-15} m\times (52)^{\frac{1}{3}}

r=4.6656\times 10^{-15} m=4.6656 fm

The approximate radius of the nucleus of this atom is 4.656 fermi.

b) F=k\times \frac{q_1q_2}{a^2}

k=9\times 10^9 N m^2/C^2 = Coulombs constant

q_1,q_2 = charges kept at distance 'a' from each other

F = electrostatic force between charges

q_1=+1.602\times 10^{-19} C

q_2=+1.602\times 10^{-19} C

Force of repulsion between two protons on opposite sides of the diameter

a=2\times r=2\times 4.6656\times 10^{-15} m=9.3312\times 10^{-15} m

F=9\times 10^9 N m^2/C^2\times \frac{(+1.602\times 10^{-19} C)\times (+1.602\times 10^{-19} C)}{(9.3312\times 10^{-15} m)^2}

F=2.6527 N

The electrostatic force of repulsion between two protons on opposite sides of the diameter of the nucleus is 2.6527

6 0
3 years ago
Which metal in Period 5 is very reactive and has two valence electrons in each atom?
iren2701 [21]
The answer is Strontium(Sr)
8 0
3 years ago
One billiard ball is shot east at 2.2 m/s. A second, identical billiard ball is shot west at 0.80 m/s. The balls have a glancing
Leona [35]

Answer:

(a). The speed of the first ball after the collision is 1.95 m/s.

(b). The direction of the first ball after the collision is 44.16° due south of east.

Explanation:

Given that,

Velocity of one ball u₁= 2.2i m/s

Velocity of second ball u₂=- 0.80i m/s

Final velocity of the second ball v₂= 1.36j m/s

The mass of the identical balls are

m = m_{1}=m_{2}

(a). We need to calculate the speed of the first ball after the collision

Using law of conservation of momentum

m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}

Along X- axis

m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}

v_{1}=u_{1}+u_{2}

Put the value into the formula

v_{1}=2.2i-0.80i

v_{1}=1.4i\ m/s

Along Y-axis

0=m_{1}v_{1}+m_{2}v_{2}

m_{1}v_{1}=-m_{2}v_{2}

v_{1}=-v_{2}

Put the value into the formula

v_{1}=-1.36j\ m/s

Then the final speed of the first ball

v_{1}=\sqrt{(1.4)^2+(1.36)^2}

v_{1}=1.95\ m/s

(b) We need to calculate the direction of the first ball after the collision

Using formula of direction

\tan\theta=\dfrac{v_{2}}{v_{1}}

\tan\theta=\dfrac{-1.36}{1.4}

\theta=\tan^{-1}\dfrac{-1.36}{1.4}

\theta=-44.16^{\circ}

Negative sign shows the direction of first ball .

Hence, (a). The speed of the first ball after the collision is 1.95 m/s.

(b). The direction of the first ball after the collision is 44.16° due south of east.

7 0
3 years ago
A solenoid with an inductance of 8 mH is connected in series with a resistance of 5 Ω and an EMF forming a series RL circuit. A
monitta

Answer:

induced EMF = 240 V

and by the lenz's law  direction of induced EMF is opposite to the applied EMF

Explanation:

given data

inductance = 8 mH

resistance = 5 Ω

current = 4.0 A

time t = 0

current grow = 4.0 A to 10.0 A

to find out

value and the direction of the induced EMF

solution

we get here induced EMF of induction is express as

E = - L \frac{dI}{dt}    ...................1

so E = - L \frac{I2 - I1}{dt}

put here value we get

E = - 8 × 10^{-3} \frac{10 - 4}{0.2*10^{-3}}

E = -40 ×  6

E = -240

take magnitude

induced EMF = 240 V

and by the lenz's law we get direction of induced EMF is opposite to the applied EMF

5 0
3 years ago
Why are there multiple versions of the scientific method?
gavmur [86]

Answer:

it's because some versions have more steps and others have less

4 0
3 years ago
Other questions:
  • Two charged particles move in the same direction with respect to the same magnetic field. particle 1 travels two times faster th
    7·1 answer
  • a layer of sandstone is in contact with a mass of granite. the sandstone contains small fragments of the granite. which rock is
    7·1 answer
  • What are stars made from
    6·1 answer
  • Solution A- pH of 5 Solution B- pH of 11 Solution C- pH of 7 Acidic Basic Neutral
    14·1 answer
  • Newton discovered that gravity affects the orbits of planets <br><br> True <br> Or<br> False
    10·2 answers
  • Eliza went for a swim. When she came out of the water, she felt cold. At the moment, a strong wind blew, and she felt even colde
    5·1 answer
  • Which of the following chemical equations is unbalanced?
    14·1 answer
  • ______________ is a physical property and can be _______________ or _____________.
    6·1 answer
  • one deterrent to burglary is to leave your front porch light on all the time if your fixture contains the 23 watt compact fluore
    6·1 answer
  • Un automovil con la velocidad de 5 m/s acelera durante 12 s a 3 m/s2,¿cual es la velocis
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!