Answer:
F = GMmx/[√(a² + x²)]³
Explanation:
The force dF on the mass element dm of the ring due to the sphere of mass, m at a distance L from the mass element is
dF = GmdM/L²
Since the ring is symmetrical, the vertical components of this force cancel out leaving the horizontal components to add.
So, the horizontal components add from two symmetrically opposite mass elements dM,
Thus, the horizontal component of the force is
dF' = dFcosФ where Ф is the angle between L and the x axis
dF' = GmdMcosФ/L²
L² = a² + x² where a = radius of ring and x = distance of axis of ring from sphere.
L = √(a² + x²)
cosФ = x/L
dF' = GmdMcosФ/L²
dF' = GmdMx/L³
dF' = GmdMx/[√(a² + x²)]³
Integrating both sides we have
∫dF' = ∫GmdMx/[√(a² + x²)]³
∫dF' = Gm∫dMx/[√(a² + x²)]³ ∫dM = M
F = GmMx/[√(a² + x²)]³
F = GMmx/[√(a² + x²)]³
So, the force due to the sphere of mass m is
F = GMmx/[√(a² + x²)]³
-- Class I lever
The fulcrum is between the effort and the load.
The Mechanical Advantage can be anything, more or less than 1 .
Example: a see-saw
-- Class II lever
The load is between the fulcrum and the effort.
The Mechanical Advantage is always greater than 1 .
Example: a nut-cracker, a garlic press
-- Class III lever
The effort is between the fulcrum and the load.
The Mechanical Advantage is always less than 1 .
I can't think of an example right now.
Answer:
346.70015 m/s
Explanation:
In the x axis speed is

In the y axis

The resultant velocity is given by

The magnitude of the overall velocity of the hamper at the instant it strikes the surface of the ocean is 346.70015 m/s