Answer : The temperature of the chloroform will be, 
Explanation :
First we have to calculate the mass of chloroform.

conversion used : 
Now we have to calculate the temperature of the chloroform.
Formula used :

where,
q = amount of heat or energy = 1.46 kJ = 1460 J (1 kJ = 1000 J)
= specific heat capacity = 
m = mass of substance = 110.958 g
= final temperature = ?
= initial temperature = 
Now put all the given values in the above formula, we get:


Now we have to convert the temperature from Kelvin to Fahrenheit.
The conversion used for the temperature from Kelvin to Fahrenheit is:

As we know that,
or, 

...........(1)
Now put the value of temperature of Kelvin in (1), we get:


Therefore, the temperature of the chloroform will be, 
Answer: A function can be defined as a relation in which one thing is dependent on another for its value.
Explanation: Given R = 8.314J/mol*k
PV = nRT
V = nRT/ P
V = 8.314RT / P (cm^3)
Volume of gas =(( 8.314 * R* T) / P ) cm3
<span>This question cannot be answered in actual centimeters unless at least one edge has a known length however it can be written as (length^3) or (length cubed). As an example if the sample of gold cube had one length of 3cm then all lengths would be 3cm on the cube.</span>
Explanation:
In HCL, one positive atom is given to chlorine from hydrogen so that it can complete it's octate. chlorine take one electron from hydrogen.
In NaCl, Sodium takes one electron from chlorine to complete its orbit with eight electrons. Chlorine gives one electron to sodium.
Sodium and magnesium oxides are alkaline. Aluminium oxides are amphoteric (reacting both as a base or acid). Silicon, phosphorus, sulfur, and chlorine oxides are acidic. Some non-metal oxides, such as nitrous oxide (N2O) and carbon monoxide (CO), do not display any acid/base characteristics.