Answer:
C
Explanation:
An object in motion will stay in motion unless acted on by a net positive or negative force.
For answer A. If the object were to be in an orbit, it would inevitably accelerate due to it being acted on by the gravitational force from the object it is orbiting. At different points in the orbit, the object will move at different speeds and continuously transfer between kinetic and potential energy.
For answer B. The object would would not stop their motion. In order for the object to lose energy, it would have to transfer it through friction or through its interaction with a gravitational field.
For answer D. No energy is "required" to maintain constant motion unless the object is willingly fighting against a resistive force like friction or a graviational well.
<span>(a)
Taking the angle of the pitch, 37.5°, and the particle's initial velocity, 18.0 ms^-1, we get:
18.0*cos37.5 = v_x = 14.28 ms^-1, the projectile's horizontal component.
(b)
To much the same end do we derive the vertical component:
18.0*sin37.5 = v_y = 10.96 ms^-1
Which we then divide by acceleration, a_y, to derive the time till maximal displacement,
10.96/9.8 = 1.12 s
Finally, doubling this value should yield the particle's total time with r_y > 0
<span>2.24 s
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span></span>
Answer:the answer is true
Explanation:because as u add more coil/wrap more coil around the nail the field get stronger and stronger to attract more nails
Hope this helped
Answer:
The potential energy at point A is 17.1675 J
Explanation:
The capillary potential is the work expended to bring up a unit mass of liquid to a point in a capillary region from a level liquid surface. It is the capillary potential that facilitates the movement of moisture within soil capillaries
In meteorology it is used to describe the level of saturated soil above the water table
Potential energy is the energy inherent in a body by virtue of its position, therefore the potentials of both point A and B are
Point A, elevation = 75 cm capillary potential = -100 cm
Point B, elevation = 25 cm capillary potential = -200 cm
The total potential energy at point A is
Elevation above reference - capillary potential =75-(-100) = 175 cm
which gives per unit mass
PE = m × g × h = 1 kg × 9.81 m/s ² × 1.75 m = 17.1675 kg·m²/s² = 17.1675 J
Answer:
False
Explanation:
Sievert is the unit of dose equivalent