Answer:
<em>The coefficient of static friction between the crate and the floor is 0.41</em>
Explanation:
<u>Friction Force</u>
When an object is moving and encounters friction in the air or rough surfaces, it loses acceleration and velocity because the friction force opposes motion.
The friction force when an object is moving on a horizontal surface is calculated by:
[1]
Where
is the coefficient of static or kinetics friction and N is the normal force.
If no forces other then the weight and the normal are acting upon the y-direction, then the weight and the normal are equal in magnitude:
N = W = m.g
The crate of m=20 Kg has a weight of:
W = 20*9.8
W = 196 N
The normal force is also N=196 N
We can find the coefficient of static friction by solving [1] for
:

The friction force is equal to the minimum force required to start moving the object on the floor, thus Fr=80 N and:


The coefficient of static friction between the crate and the floor is 0.41
Answer:
Perpendicular to the surface
Explanation:
- Electric field lines represent the direction of the electric field. The electric field lines also correspond to the direction along which the gradient of the electric potential is maximum.
- Equipotentials are lines or surfaces along which the electric potential is constant: the electric potential does not change moving along an equipotential surface.
Given the two definitions, equipotential lines are always perpendicular to the electric field lines. Therefore, in this problem, the direction of the electric field is perpendicular to the spherical equipotential surface.
Answer:
Typically found in eukaryotic cells, centrioles are cylindrical (tube-like) structures/organelles composed of microtubules. In the cell, centrioles aid in cell division by facilitating the separation of chromosomes. For this reason, they are located near the nucleus.
First let us assign variables,
d = distance travelled
t = time it took
v = velocity of the commercial airline
In linear physics, the equation for velocity is given as:
v = d / t
Rewriting for d:
d = v t
We know that the distance to and from south America are equal
therefore:
d1 (going) = d2 (return)
Let us say that velocity of air is v3. Since going to South
America, the wind is against the direction of the plane and the return trip is
the opposite, therefore:
(v1 - v3) t1 = (v1 + v3) t2
(v1 – v3) 4 = (v1 + v3) 3.53
4 v1 – 4 v3 = 3.53 v1 + 3.53 v3
0.47 v1 = 7.53 v3
v1 = 16.02 v3
Since we also know that:
(v1 - v3) t1 = 784
(16.02 v3 – v3) * 4 = 784
60.085 v3 = 784
v3 = 13.05 mph
Therefore the speed of the plane in still air, v1 is:
v1 = 16.02 * 13.05
<span>v1 = 209.03 mph (ANSWER)</span>
<span> </span>