1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andre [41]
3 years ago
10

Which of the following is an example of how humans can increase biodiversity?

Physics
1 answer:
Leto [7]3 years ago
7 0

Answer:

The following is an example of how humans can increase biodiversity

Provide Wildlife Corridors and Connections Between Green Spaces

Use Organic Maintenance Methods and Cut Back On Lawns

Use a Native Plant Palette and Plant Appropriately

Utilize Existing Green Space Connections

Be Mindful of Non-Native Predators

You might be interested in
A glass of root beer with a scoop of ice cream floating on top and a straw sticking out.
vampirchik [111]

Answer:

These forces are all equal and cancel each other out. Gravity pushes downward on the ice cream. This can also be called the weight of the ice cream. Buoyant force pushes the ice cream upward

6 0
2 years ago
A 1000kg ar accelerates from rest to 25.0m/s in 4.20
bezimeni [28]

Answer:

74.4 kilowatts or 99.8 horsepower

Explanation:

The explanation is in the attachment.

7 0
3 years ago
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
The kinetic energy of an object increases as its ____ its potential energy
tankabanditka [31]
The kinetic energy of an object increases as its decreases <span>its potential energy as the sum of energy will remain constant.

In short, Your Answer would be "Decreases"

Hope this helps!</span>
8 0
3 years ago
What is the mechanical advantage of the screw shown below? O A. 14.1 O B. 2 O C. 12.6 O D. 8.2.​
Vilka [71]

Answer: C. 12.6

Explanation: 2*pi*1.8= 11.304

11.304/0.9= 12.56

3 0
3 years ago
Other questions:
  • An airport has a moving walkway in a long corridor (of lengthL) designed to savepassengers time. If Tom walks through the corrid
    5·1 answer
  • What is number 6 and 7 need help ASAP!!
    8·2 answers
  • A searchlight is 210 ft from a straight wall. As the beam moves along the​ wall, the angle between the beam and the perpendicula
    7·1 answer
  • A bowling ball collides with a pin, knocking it over. The ball continues to move
    6·1 answer
  • Two golf balls are hit from the same point on a flat field. Both are hit at an angle of 30∘ above the horizontal. Ball 2 has twi
    9·2 answers
  • PLEASE HELP ME WITH THIS ONE QUESTION
    13·1 answer
  • Hi!!I need sum help with this bc my teacher told me it had to be more specific!
    12·1 answer
  • Explain the benefits of understanding sound waves properties in real life.
    11·1 answer
  • Anino acids are important to the body because they build
    7·2 answers
  • Can someone please help me because this is a hard problem to solve.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!