The correct answer is C; Bicycles.
Further Explanation:
In major cities, in the United States, have implemented signal lights specifically designed for bicycle riders. The riders also have their own designated bike lanes in many large cities. Drivers in vehicles, are to give the right of way to people on bicycles.
Bicycle riders are to follow the same laws and laws specifically for the riders or they can face fines and tickets.
Learn more about bicycle laws at brainly.com/question/8934107
#LearnwithBrainly
Hello,
<u>Solution for A:</u>
Force = 3.00N
Mass = 0.50 Kgs
Time = 1.50 Seconds
According to newton's second law of motion;
Force = Mass times Acceleration(a)
3.00 = 0.50 * a
a = 3.00/0.50 = 6.00 m/s^2
We know that acceleration = Velocity / time
So Velocity = time * acceleration = 1.50 * 6 = 9.00 m/s^2
<u>Solution for B:</u>
The net force = 4.00N - 3.00N = 1.00N to the left
Force = 1.00N
Mass = 0.50Kg
Time = 3.00 Seconds
Again; F = MA (Where F is force, M is mass and A is acceleration)
1.00N = 0.5 * A
A = 1/0.5 = 2 m/s^2
Velocity = Acceleration * Time = 2 * 3 = 6 m/s
Answer:
993.52 Hz
Explanation:
The frequency of sound emitted by the stationery train is 1057 Hz.
The car travels away from the train at 20.6 m/s.
The frequency the observer hears is given by the formula:

where v = velocity of sound = 343 m/s
vo = velocity of observer
f = frequency from source
This phenomenon is known as Doppler's effect.
Therefore:

The frequency heard by the observer is 993.52 Hz.
Answer:
Speedometer, instrument that indicates the speed of a vehicle, usually combined with a device known as an odometer that records the distance traveled.
Explanation:
Answer:
Gravitational
Tension
Normal
Friction.
Explanation:
The forces acting on the sled are:
Tension: the tension from the rope, this is the force that "moves" the sled.
Friction: kinetic friction between the sled and the ground as the sled moves.
There are another two forces that also act on the sled, but that "has no effect"
Gravitational force: This force pulls the sled down, against the floor.
Normal force: This force "opposes" to the gravitational one, so they cancel each other.
These two forces cancel each other, so they have no direct impact on the movement of the sled. BUT, the friction force depends on the weight of the moving object, and the weight of the moving object depends on the gravitational force, so we need gravitational force in order to have friction force.
Then we can conclude that the forces acting on the sled are:
Gravitational
Tension
Normal
Friction.