Answer:
0.074m/s
Explanation:
We need the formula for conservation of momentum in a collision, this equation is given by,

Where,
= mass of ball
= mass of the person
= Velocity of ball before collision
= Velocity of the person before collision
= velocity of ball afer collision
= velocity of the person after collision
We know that after the collision, as the person as the ball have both the same velocity, then,


Re-arrenge to find
,

Our values are,
= 0.425kg
= 12m/s
= 68.5kg
= 0m/s
Substituting,


<em />
<em>The speed of the person would be 0.074m/s after the collision between him/her and the ball</em>
Sound waves travel faster through <em>solids</em> than they do through gases or liquids. <em>(C) </em>They don't travel through vacuum at all.
Example:
Speed of sound in normal air . . . around 340 m/s
Speed of sound in water . . . around 1,480 m/s
Speed of sound in iron . . . around 5,120 m/s
Missing figure and missing details can be found here:
<span>http://d2vlcm61l7u1fs.cloudfront.net/media%2Fdd5%2Fdd5b98eb-b147-41c4-b2c8-ab75a78baf37%2FphpEgdSbC....
</span>
Solution:
(a) The work done by the spring is given by

where k is the elastic constant of the spring and

is the stretch between the initial and final position. Since x1=-8 in=-0.203 m and x2=5 in=0.127 m, we have

(b) The work done by the weight is the product of the component of the weight parallel to the inclined plane and the displacement of the cart:

where the negative sign is given by the fact that

points in the opposite direction of the displacement of the cart, and where

therefore, the work done by the weight is
Answer:
66.5N
Explanation:
F = kx
Where F = force
K = spring constant
x = compression
Given
K = 950N/m
x = 7.0cm
F = ?
First convert the compression to meters .
7.0cm = 7.0 x 0.01
= 0.07 meters
Therefore
F = 950 x 0.07
= 66.5N
Models show how the atoms in a compound are connected.