Answer:
Resistance of the second wire is twice the first wire.
Explanation:
Let us first see the formula of resistance;
R = pxL/A
Here L is the lenght of the wire, A the area and p is the resistivity of wire.
As we are given that the length of second wire is double than that of the first wire, hence the resistance of second wire would be double.
Since we have two loop in second case, inducing double voltage but as resistance is doubled so the current would remain same according to ohms law
I = V/R
Answer:
The plant would not reproduce because the flower uses the stigma to catch the pollen
Answer:
A large piece of charcoal on a grill in the sunlight (if it's burning) will consist of the following types of energy:
- Chemical
- Heat and
- Light
Explanation:
Charcoal is basically carbon which is produced when wood is heated strongly in the absence of oxygen. From a chemistry point of view, charcoal contains combustible carbon whose chemical formula is C. Sometimes, which is water may be found in it but in very small units.
All matter contains Heat energy. Charcoal is not an exception. As the charcoal burns, the heat energy is produced along with Light energy.
Light comes in many forms such as Infrared rays, Xrays, Visible Spectrum light, etc.
The glow which the coal gives off fall under the visible spectrum of light.
Cheers
In the given graph, from 4.0 s to 8.0 s, the object is at rest because the speed is zero.
In the given graph we can deduce the following;
- at the time interval, 0 s to 3.5 s, the speed of the object = 1 cm/s
- when the time, t= 4 s, the <em>speed</em> of the object = 0 cm/s
- at the time interval, 4.0 s to 8.0 s, the<em> speed </em>of the object = 0 cm/s
When the <em>speed</em> of an object is zero (0), the object is simply at rest.
Thus, we can conclude that in the given graph, from 4.0 s to 8.0 s, the object is at rest because the speed is zero.
Learn more here:brainly.com/question/10454047
Ideal Gas Law PV = nRT
THE GASEOUS STATE
Pressure atm
Volume liters
n moles
R L atm mol^-1 K^-1
Temperature Kelvin
pv = rt
divide both sides by v
pv/v = rt/v
p = rt/v
answer: p = rt/v
Ideal Gas Law: Density
PV = NRT
PV = mass/(mw)RT
mass/V = P (MW)/RT = density
Molar Mass:
Ideal Gas Law PV = NRT
PV = mass/(MW) RT
MW = mass * RT/PV
Measures of Gases:
Daltons Law of Partial Pressures; is the total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases.
Total = P_ A + P_ B
P_ A V = n_ A RT
P_ B V = n_ B R T
Partial Pressures in Gas Mixtures:
P_ total = P_ A + P_ B
P_ A = n_ A RT/V P_ B = n_ B RTV
P_ total = P_ A + P_ B = n_ total RT/V
For Ideal Gasses:
P_ A = n_ A RT/V P_ total = n_ toatal RT/V
P_ A/P_ total = n_ A RTV/n_ total RTV
= n_ A/n_ total = X_ A
Therefore, P_ A = X_ A P_ total.
PV = nRT
P pressure
V volume
n Number of moles
R Gas Constant
T temperture (Kelvin.).
Hope that helps!!!!!! Have a great day : )