Answer:
The Internal energy of the gas did not change
Explanation:
In this situation the Internal energy of the gas did not change and this is because according the the first law of thermodynamics
Δ U = Q - W ------ ( 1 )
Δ U = change in internal energy
Q = heat added
W = work done
since Q = W. the value of ΔU will be = zero i.e. No change
Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11
Answer:
<h2>7000 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 1750 × 4
We have the final answer as
<h3>7000 N</h3>
Hope this helps you
The new pressure P2 is 2.48 atmosphere.
<u>Explanation:</u>
Here, the one of the product of pressure and volume is equal to the products of pressure and volume of other.
By using Boyles's law,
pressure is inversely proportional to volume,
P1 V1 = P2 V2
where P1, V1 represents the first pressure and volume,
P2, V2 represents the second pressure and volume
P2 = (P1 V1) / V2
= (1.75
8.8) / 6.2
P2 = 2.48 atmosphere.