Well i really need to see the choices but i think you mean neon
Answer:
Explanation:
Given that,
Mass of star M(star) = 1.99×10^30kg
Gravitational constant G
G = 6.67×10^−11 N⋅m²/kg²
Diameter d = 25km
d = 25,000m
R = d/2 = 25,000/2
R = 12,500m
Weight w = 690N
Then, the person mass which is constant can be determined using
W =mg
m = W/g
m = 690/9.81
m = 70.34kg
The acceleration due to gravity on the surface of the neutron star is can be determined using
g(star) = GM(star)/R²
g(star) = 6.67×10^-11 × 1.99×10^30 / 12500²
g (star) = 8.49 × 10¹¹ m/s²
Then, the person weight on neutron star is
W = mg
Mass is constant, m = 70.34kg
W = 70.34 × 8.49 × 10¹¹
W = 5.98 × 10¹³ N
The weight of the person on neutron star is 5.98 × 10¹³ N
Answer:
The correct answer is "0.246".
Explanation:
Given that the amplitude is decreased by a factor of 9, then
![A \rightarrow (A-\frac{A}{9} )](https://tex.z-dn.net/?f=A%20%5Crightarrow%20%28A-%5Cfrac%7BA%7D%7B9%7D%20%29)
![A \rightarrow \frac{8A}{9}](https://tex.z-dn.net/?f=A%20%5Crightarrow%20%5Cfrac%7B8A%7D%7B9%7D)
As we know,
Energy will be:
⇒
and,
⇒ ![E_{2}=\frac{1}{2}K(\frac{8A}{9} )^2](https://tex.z-dn.net/?f=E_%7B2%7D%3D%5Cfrac%7B1%7D%7B2%7DK%28%5Cfrac%7B8A%7D%7B9%7D%20%29%5E2)
![=\frac{64KA^2}{162}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B64KA%5E2%7D%7B162%7D)
⇒ ![\Delta E=E_1-E_2](https://tex.z-dn.net/?f=%5CDelta%20E%3DE_1-E_2)
On putting the estimated values, we get
![=\frac{1}{2}KA^2-\frac{64KA^2}{162}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7DKA%5E2-%5Cfrac%7B64KA%5E2%7D%7B162%7D)
⇒ ![\frac{\Delta E}{E}=\frac{\frac{20}{162}KA^2}{\frac{1}{2}KA^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20E%7D%7BE%7D%3D%5Cfrac%7B%5Cfrac%7B20%7D%7B162%7DKA%5E2%7D%7B%5Cfrac%7B1%7D%7B2%7DKA%5E2%7D)
![=\frac{40}{162}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B40%7D%7B162%7D)
![=0.246](https://tex.z-dn.net/?f=%3D0.246)
As per above given data
initial velocity = 19.3 km/s
final velocity = - 18.8 km/s
now in order to find the change in velocity
![\Delta v = v_f - v_i](https://tex.z-dn.net/?f=%5CDelta%20v%20%3D%20v_f%20-%20v_i)
![\Delta v = -18.8 - 19.3](https://tex.z-dn.net/?f=%5CDelta%20v%20%3D%20-18.8%20-%2019.3)
![\Delta v = -38.1 km/s](https://tex.z-dn.net/?f=%5CDelta%20v%20%3D%20-38.1%20km%2Fs)
![\Delta v = -3.81 * 10^4 m/s](https://tex.z-dn.net/?f=%5CDelta%20v%20%3D%20-3.81%20%2A%2010%5E4%20m%2Fs)
Part b)
Now we need to find acceleration
acceleration is given by formula
![a = \frac{\Delta v}{\Delta t}](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7B%5CDelta%20v%7D%7B%5CDelta%20t%7D)
given that
![\Delta v =- 3.81 * 10^4 m/s](https://tex.z-dn.net/?f=%5CDelta%20v%20%3D-%203.81%20%2A%2010%5E4%20m%2Fs)
![\Delta t = 2.07 years = 6.53 * 10^7 s](https://tex.z-dn.net/?f=%5CDelta%20t%20%3D%202.07%20years%20%3D%206.53%20%2A%2010%5E7%20s)
now the acceleration is given as
![a = \frac{-3.81 * 10^4}{6.53 * 10^7}](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7B-3.81%20%2A%2010%5E4%7D%7B6.53%20%2A%2010%5E7%7D)
![a = - 5.84 * 10^{-4}m/s^2](https://tex.z-dn.net/?f=a%20%3D%20-%205.84%20%2A%2010%5E%7B-4%7Dm%2Fs%5E2)
so above is the acceleration