Distance = (15 minutes) x (60 sec/min) x (2 meter/sec)
Distance = (15 x 60 x 2) (minute-sec-meter / min-sec)
Distance = <em>1,800 meters </em>
Answer:
A) V_rms = 29 V
B) Vav = 0 V
Explanation:
A) We are told that;
V = V_o cos ωt
voltage amplitude; V = V_o = 41.0V
Now, the formula for the root-mean-square potential difference Vrms is given as;
V_rms = V/√2
Thus plugging in relevant values, we have;
V_rms = 41/√2
V_rms = 29 V
B) Due to the fact that the voltage is sinusoidal from the given V = V_o cos ωt, we can say that the average potential difference Vav between the two terminals of the power supply would be zero.
Thus; Vav = 0 V
"The are many different seismic waves, but all of basically of four types:
Compressional or P (for primary)
or S (for secondary)
Love
Rayleigh
An earthquake radiates P and S waves in all directions and the interaction of the P and S waves with Earth's surface and shallow structure produces surface waves."
To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.