Assuming dopant atoms are uniformly distributed in a silicon crystal, how far apart are these atoms when the doping concentratio
ns are 5.0x1015 cm-3 and 5.0x1020 cm-3?
1 answer:
Answer:
d =~ 5.8μm
d =~ 0.13 μm
Explanation:
when the doping concentrations are 5 × 10^15 cm^-3
d = v^-1/3 ; where d represent the distance between the atoms , and v represent the volume
d =1/ ∛v
d = 1/ ∛5 × 10^15
d = 1/ 170997.5
d = 5.85 × 10 ^ -6
d =~ 5.8μm
when the doping concentrations are 5 × 10^20 cm^-3
d = v^-1/3 ; where d represent the distance between the atoms , and v represent the volume
d =1/ ∛v
d = 1/ ∛5 × 10^20
using the principle of surds and standard forms, we have
d = 1/ ∛0.5 × 10^21
d = 1/7937005.26
d = 1.26 × 10 ^ -7
d = 0.126 × 10 ^ -6
d =~ 0.13 μm
You might be interested in
It is a graph. It shows observations and then you record your results with any of the graph types.
Answer:
b=200
l=100
Explanation:
so since it is a square all sides would be equal
when you cut the square vertically the dimensions will change
the bredth would be same that is 200
but the length would be half that is 100
Answer:
2-octene
Explanation:
the 8-carbon chain (oct); has a double bond (ene) is on the 2nd carbon (2-)