Answer:
odorless, crystalline, white solid with a sour taste.
Explanation:
The number of moles of argon that must be released in order to drop.
Solution:
Initial Temperature = 25°c = 298 K
Final Temperature =125 °c = 398 K
Initial Moles (n1) = 0.40 mole
Now, Using the ideal gas law,
n1T1 = n2T2
0.400×298 = n2 × 398
n2 = 0.299 mol
Moles of Argon released
= 0.400-0.299
= 0.100 mol.
Pressure and force are related. That is using the physical equations if you know the other, you can calculate one using pressure = force/area. This pressure can be reported in pounds per square inch, psi, or Newtons per square meter N/m2. Kinetic energy causes air molecules to move faster. They hit the walls of the container more often and with greater force. The increased pressure inside the can may exceed the strength of the can and cause an explosion.
Learn more about The temperature here:-brainly.com/question/24746268
#SPJ1
When equilibrium is reached, the solution is said to be saturated. A solution containing a higher concentration of solute than its solubility is said to be supersaturated.
Answer: d
From the given observations,
You can see that as the concentration is doubled, half-life is halved.
That is,half-life is inversely proportional to concentration
As t( half-life) ~ 1/a^(n-1)
For this case n = 2,second order reaction.
R = k X a^n
Using the above formula you will get the rate and rate constant.