Answer:
4.4×10² cm³
Explanation:
From the question given above, the following data were obtained:
Diameter (d) = 68.3 mm
Height (h) = 0.120 m
Volume (V) =?
Next, we shall convert the diameter (i.e 68.3 mm) to cm.
This can be obtained as follow:
10 mm = 1 cm
Therefore
68.3 mm = 68.3 mm / 10 mm × 1 cm
68.3 mm = 6.83 cm
Therefore, the diameter 68.3 mm is equivalent 6.83 cm.
Next, we shall convert the height (i.e 0.120 m) to cm. This can be obtained as follow:
1 m = 100 cm
Therefore,
0.120 m = 0.120 m/ 1 m × 100 cm
0.120 m = 12 cm
Therefore, the height 0.120 m is equivalent 12 cm.
Next, we shall determine the radius of the cylinder. This can be obtained as follow:
Radius (r) is simply half of a diameter i.e
Radius (r) = Diameter (d) /2
r = d/2
Diameter (d) = 6.83 cm
Radius (r) =?
r = d/2
r = 6.83/2
r = 3.415 cm
Finally, we shall determine the volume of the cylinder as follow:
Radius (r) = 3.415 cm
Height (h) = 12 cm
Volume (V) =?
Pi (π) = 3.14
V = πr²h
V = 3.14 × (3.415) ² × 12
V = 440 cm³
V = 4.4×10² cm³
Therefore, the volume of the cylinder is 4.4×10² cm³
Answer:
answers from left to right:
decomposition,decomposition,synthesis,replacement,synthesis,replacement
Explanation:
Answer:
they use in industrial deliveries
Explanation:
Pulleys are important in pakikipagkalakalan
<span>Since these molecules are all non-polar, the only intermolecular force of attraction will be London dispersion forces. Since these increase by the size of the molecule, the boiling points will decrease in the same order:
Parafin > Heptadecane > hexane > 2,2-dimethylbutane > propane
For these two, hexane > 2,2-dimethylbutane, dispersion forces are greater in a molecule which is longer and unbranched compared to one which is branched and more compact.</span>
Answer:
The two different atoms are able to combine their electrons to become stable.
hope this helps :)