The Answer to your question would be A
The answer is c.
Elements on the left side of the table are metals, such as sodium, lithium, potassium, etc.
Elements on the right side are non metals, such as Chlorine, Fluorine, Bromine, etc.
Answer:
a) volume of ammonium iodide required =349 mL
b) the moles of lead iodide formed = 0.0436 mol
Explanation:
The reaction is:

It shows that one mole of lead nitrate will react with two moles of ammonium iodide to give one mole of lead iodide.
Let us calculate the moles of lead nitrate taken in the solution.
Moles=molarityX volume (L)
Moles of lead nitrate = 0.360 X 0.121 =0.0436 mol
the moles of ammonium iodide required = 2 X0.0436 = 0.0872 mol
The volume of ammonium iodide required will be:

the moles of lead iodide formed = moles of lead nitrate taken = 0.0436 mol
Answer:
For example, the sugar found in milk is called lactose. With the aid of the enzyme, lactase, the substrate, lactose, is broken down into two products, glucose and galactose. People who don't make enough lactase have trouble digesting milk products and are lactose intolerant.
The noble gas is Xenon and its molar mass is 131 g/mol.
<h3>What is the molar mass of the noble gas?</h3>
The molar mass of the noble gas is determined as follows;
Let molar mass of unknown gas be M, and mass of gas be m
Density of the noble gas, ρ = 5.8 g/dm³
density = m/V
At STP;
- temperature, T = 273.15 K
- pressure, P = 1 atm
- molar gas constant, R = 0.0821 L.atmK⁻¹mol⁻¹
From ideal gas equation:
PV = nRT
where n = m/M
PV = mRT/M
M = mRT/PV
M = 0.0821 * 273.15 * 5.84/1
Molar mass of the noble gas = 131 g/mol
The noble gas is Xenon which has molar mass approximately equal to 131 g/mol.
Learn more about molar mass at: brainly.com/question/837939
#SPJ1