Answer:
Explanation:
Elements on the right side of the periodic table are very likely to form negative ions -- all of those except elements in the 8th or 18th column (depending on how your periodic table is numbered).
K and Mg are on the left side, so they will not form negative ions.
They give up 1 (for K) electron and 2 (for Mg) electrons which will leave plus charges for the ions.
On the other hand S and I are on the right side of the periodic table. They will take on electrons and hence be charged with a minus.
Answer:
it is a nice question....my mind tells me that the first is it use me as a good vibes and can use to anything the second i will do my best too absorbe it.
Explanation:
Hope this help...
Ln(800/3200) = - kt
t = 24 years.
ln(0.25) = -k*24
(- 1.3863) = -k*24
1.3863 / 24 = k
0.05776 = k
ln(0.5) = -k*t
-0.6931 = - 0.05776 t
12 = t
I don't know if you can just look at the question and know the answer. If 24 years is a quarter life then is it obvious that the 1/2 life is 12 years? It might be, but the method I've used works for sure.
Answer:
1- 0.04 M/s.
2- 0.16 M/s.
Explanation:
- For the reaction: 4PH₃ → P₄ + 6H₂.
<em>The rate of the reaction = - d[PH₃]/4dt = d[P₄]/dt = d[H₂]/6dt.</em>
where, - d[PH₃]/dt is the rate of PH₃ changing "rate of disappearance of PH₃".
d[P₄]/dt is rate of P₄ changing "rate of appearance of P₄".
d[H₂]/dt is the rate of H₂ changing "rate of formation of H₂" (d[H₂]/dt = 0.24 M/s).
<u><em>(a) At what rate is P₄ changing?</em></u>
∵ The rate of the reaction = d[P₄]/dt = d[H₂]/6dt.
∴ <em>rate of P₄ changing = </em>d[P₄]/dt = d[H₂]/6dt = (0.240 M/s)/(6.0) = 0.04 M/s.
<u><em>(b) At what rate is PH</em></u>₃<u><em> changing?</em></u>
∵ The rate of the reaction = - d[PH₃]/4dt = d[H₂]/6dt.
∴ <em>rate of PH</em>₃<em> changing = </em>- d[PH₃]/dt = 4(d[H₂]/6dt) = (4)(0.240 M/s)/(6.0) = 0.16 M/s.
Explanation:
For an isothermal process equation will be as follows.
W = nRT ln
It is given that mass is 10 kg/s or 10,000 g/s (as 1 kg = 1000 g). So, calculate number of moles of water as follows.
No. of moles =
=
= 555.55 mol/s
= 556 mol/s (approx)
As T =
or (50 + 273.15) K = 323.15 K. Hence, putting the given values into the above formula as follows.
W = nRT ln[/tex]\frac{P_{1}}{P_{2}}[/tex]
=
=
= -3440193.809 J/s
Negative sign shows work is done by the pump. Since, 1 J = 0.001 kJ. Therefore, converting the calculated value into kJ as follows.

= 3440.193 kJ/s
= 3451 kJ/s (approx)
Thus, we can conclude that the pump work is 3451 kJ/s.