Answer:
7.78x10^-8T
Explanation:
The Pointing Vector S is
S = (1/μ0) E × B
at any instant, where S, E, and B are vectors. Since E and B are always perpendicular in an EM wave,
S = (1/μ0) E B
where S, E and B are magnitudes. The average value of the Pointing Vector is
<S> = [1/(2 μ0)] E0 B0
where E0 and B0 are amplitudes. (This can be derived by finding the rms value of a sinusoidal wave over an integer number of wavelengths.)
Also at any instant,
E = c B
where E and B are magnitudes, so it must also be true at the instant of peak values
E0 = c B0
Substituting for E0,
<S> = [1/(2 μ0)] (c B0) B0 = [c/(2 μ0)] (B0)²
Solve for B0.
Bo = √ (0.724x2x4πx10^-7/ 3 x10^8)
= 7.79 x10 ^-8 T
Answer:

Explanation:
<u>Motion in The Plane</u>
When an object is launched in free air with some angle respect to the horizontal, it describes a known parabolic path, comes to a maximum height and finally drops back to the ground level at a certain distance from the launching place.
The movement is split into two components: the horizontal component with constant speed and the vertical component with variable speed, modified by the acceleration of gravity. If we are given the values of
and
as the initial speed and angle, then we have




If we want to know the maximum height reached by the object, we find the value of t when
becomes zero, because the object stops going up and starts going down

Solving for t

Then we replace that value into y, to find the maximum height

Operating and simplifying

We have

The maximum height is


Countries longer day for example in the Middle East could benefit more but Alaska has more night like longer night which is why it would hard to benefit from the solar panels there.
Hoped this helped
Answer:
elastic partial width is 2.49 eV
Explanation:
given data
ER E = 250 eV
spin J = 0
cross-section magnitude σ = 1300 barns
peak P = 20ev
to find out
elastic partial width W
solution
we know here that
σ = λ²× W / ( E × π × P ) ...................1
put here all value
σ = (0.286)² × W ×
/ ( 250 × π × 20 )
1300 ×
= (0.286)² × W ×
/ ( 250 × π × 20 )
solve it and we get W
W = 249.56 ×
so elastic partial width is 2.49 eV
Answer:
Quantum mechanics was one of the two great revolutions in modern physics. The first, or Einstein's relativity, was in fact the pinnacle of classical physics. But quantum mechanics and related theories completely changed the world of science and philosophy, and it was the end of classical physics.
Like Einstein relativity, we all use quantum mechanics on a daily basis, but its mathematical principles are very complex and beyond the reach of ordinary people without a degree in physics or mathematics.
In this post, I have tried to make this theory more accessible to all interested loved ones by stating the quantum theory and its consequences for the public.