Answer:
yo try and search it on Google
When cohesive force is stronger than the adhesive force: concave up meniscus, water forms droplets on surface
Answer:
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Explanation:
The solubility constant give us the molar solubilty of ionic compounds. In general for a compound AB the ksp will be given by:
Ksp = (A) (B) where A and B are the molar solubilities = s² (for compounds with 1:1 ratio).
It follows then that the higher the value of Ksp the greater solubilty of the compound if we are comparing compounds with the same ionic ratios:
Comparing AgBr: Ksp = 5.4 x 10⁻¹³ with AgCl: Ksp = 1.8 x 10⁻¹⁰, AgCl will be more soluble.
Comparing Ag2CO3: Ksp = 8.0 x 10⁻¹² with AgCl Ksp = AgCl: Ksp = 1.8 x 10⁻¹⁰ we have the complication of the ratio of ions 2:1 in Ag2CO3, so the answer is not obvious. But since we know that
Ag2CO3 ⇄ 2 Ag⁺ + CO₃²₋
Ksp Ag2CO3 = 2s x s = 2 s² = 8.0 x 10-12
s = 4 x 10⁻12 ∴ s= 2 x 10⁻⁶
And for AgCl
AgCl ⇄ Ag⁺ + Cl⁻
Ksp = s² = 1.8 x 10⁻¹⁰ ∴ s = √ 1.8 x 10⁻¹⁰ = 1.3 x 10⁻⁵
Therefore, AgCl is more soluble than Ag₂CO₃
The order of solubility is AgBr < Ag₂CO₃ < AgCl
he required empirical formula based on the data provided is Na2CO3.H2O.
<h3>What is empirical formula?</h3>
The term empirical formula refers to the formula of a compound which shows the ratio of each specie present.
We have the following;
Mass of sodium = 37.07-g
Mass of carbonate = 48.39 g
Mass of water = 14.54-g
Number of moles of sodium = 37.07-g/23 g/mol = 2 moles
Number of moles of carbonate = 48.39 g/61 g/mol = 1 mole
Number of moles of water = 14.54/18 g/mol = 1 mole
The mole ratio is 2 : 1: 1
Hence, the required empirical formula is Na2CO3.H2O
Learn more about empirical formula : brainly.com/question/11588623