Given:
u(initial velocity)=0
v(final velocity)= 10 m/s
t= 4 sec
Now we know that
v= u + at
Where v is the final velocity
u is the initial velocity
a is the acceleration measured in m/s^2
t is the time measured in sec
10=0+ax4
a=10/4
a=2.5 m/s^2
Answer:
Explanation:
a ) Momentum of first cart = mass x velocity
= 3 x 4.6 =+13.8 kg m /s
Momentum of second cart = 1.3 x - 1.9 = - 2.47 kg m /s
Total momentum = 13.8 - 2.47
= +11.33 kg m /s
b )
Let the velocity of first cart be v at the moment when second cart was at rest
total momentum = 3 x v + 0 = 3 v
Applying conservation of momentum law
3 v = +11.33
v = +3.77 m /s
Answer:
please give me brainlist and follow
Explanation:
At the bottom of the hill, the baby carriage will likely have less momentum Therefore, option D is correct. Solution: ... Therefore, at the bottom of the hill, the heavy truck will have more momentum and baby carriage will have less momentum.