They communicate their result to the scientific community- so to speak
Explanation: (I think)
Plug your values into the momentum equation.
So m1= 63kg
m2 = 10 kg
V1 = 12 m/s
And then plug in your values and solve for your unknown (v2)
Given :
Liquid is poured into a burrete so that it reads 14cm³.
50 drops were run each of volume 0.1cm³ .
To Find :
The volume of liquid in burrete after 50 drops.
Solution :
Volume of each drop, v = 0.1 cm³.
Initial volume in burrete, V = 14 cm³.
Now, volume left after droping 50 drops are :

Therefore, the volume left in burrete is 9 cm³ .
Answer:
Net force: 20 N to the right
mass of the bag: 20.489 kg
acceleration: 0.976 m/s^2
Explanation:
Since the normal force and the weight are equal in magnitude but opposite in direction, they add up to zero in the vertical direction. In the horizontal direction, the 195 N tension to the right minus the 175 force of friction to the left render a net force towards the right of magnitude:
195 N - 175 N = 20 N
So net force on the bag is 20 N to the right.
The mass of the bag can be found using the value of the weight force: 201 N:
mass = Weight/g = 201 / 9.81 = 20.489 kg
and the acceleration of the bag can be found as the net force divided by the mass we just found:
acceleration = 20 N / 20.489 kg = 0.976 m/s^2