The formula for the mass that remains:

m₀ - the initial mass, t - time, T - the half-life

The answer is c. 1.25 g.
A red ladybug appears red in white light, red in red light, and black in blue light. Those would be the proper selections you'd need.
Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower
Answer:
Explanation:
Using the efficiency formula;
Efficiency = Work done by the machine (output)/work done on the machine (input) ×100%
Efficiency =w/50 ×100
90 = 100w/50
Cross multiply
90×50 = 100W
4500 = 100W
W = 4500/100
W = 45Joules
Hence the lever does 45Joules of work on its load
2) Mechanical Advantage= Load/Effort
Given
MA = 4
Load = 500N
4 = 500/Effort
Effort = 500/4
Effort =125N
Hence the effort required to lift the load is 125N
Body waves travel through the interior of the Earth. Surface waves travel across the surface. Surface waves decay more slowly with distance than body waves which travel in three dimensions. Particle motion of surface waves is larger than that of body waves, so surface waves tend to cause more damage.
https://en.m.wikipedia.org › wiki