Answer:

Explanation:
As per energy conservation we know that the electrostatic potential energy of the charge system is equal to the initial kinetic energy of the alpha particle
So here we can write it as

now we know that


z = 79
here kinetic energy of the incident alpha particle is given as

now we have

now we have

Density-Dependent:
1<span><span><span><span>. </span>competition.</span><span>
<span>2. </span>overcrowding.</span><span>
3<span>. </span>predators.</span></span><span>
(These are a few from a test I took, hopefully they help you a bit >.<)</span></span>
The moon is between the sun and earth.
The side where the light from the sun hits the moon is facing away from earth.
The amount of heat needed to increase the temperature of a substance by

is given by

where m is the mass of the substance, Cs is its specific heat capacity and

is the increase of temperature.
If we re-arrange the formula, we get

And if we plug the data of the problem into the equation, we can find the specific heat capacity of the substance:
Answer:
658.16N
Explanation:
Step one:
given data
mass m= 235kg
Force F= 760N
angle= 30 degrees
Required
The horizontal component of the force
Step two:
The horizontal component of the force
Fh= 760cos∅
Fh=760cos30
Fh=760*0.8660
Fh=658.16N