Answer:
Paradox of Organizational Change: Engineering Organizations with Behavioral Systems Analysis. by. Maria E. Malott.
Answer:
true
Explanation:
A well designed product will increase in sells and in stock.
Answer:
The primary piston activates one of the two subsystems. The hydraulic pressure created, and the force of the primary piston spring, moves the secondary piston forward.
Answer:
a) it is periodic
N = (20/3)k = 20 { for K =3}
b) it is Non-Periodic.
N = ∞
c) x(n) is periodic
N = LCM ( 5, 20 )
Explanation:
We know that In Discrete time system, complex exponentials and sinusoidal signals are periodic only when ( 2π/w₀) ratio is a rational number.
then the period of the signal is given as
N = ( 2π/w₀)K
k is least integer for which N is also integer
Now, if x(n) = x1(n) + x2(n) and if x1(n) and x2(n) are periodic then x(n) will also be periodic; given N = LCM of N1 and N2
now
a) cos(2π(0.15)n)
w₀ = 2π(0.15)
Now, 2π/w₀ = 2π/2π(0.15) = 1/(0.15) = 1×20 / ( 0.15×20) = 20/3
so, it is periodic
N = (20/3)k = 20 { for K =3}
b) cos(2n);
w₀ = 2
Now, 2π/w₀ = 2π/2) = π
so, it is Non-Periodic.
N = ∞
c) cos(π0.3n) + cos(π0.4n)
x(n) = x1(n) + x2(n)
x1(n) = cos(π0.3n)
x2(n) = cos(π0.4n)
so
w₀ = π0.3
2π/w₀ = 2π/π0.3 = 2/0.3 = ( 2×10)/(0.3×10) = 20/3
∴ N1 = 20
AND
w₀ = π0.4
2π/w₀ = 2π/π0. = 2/0.4 = ( 2×10)/(0.4×10) = 20/4 = 5
∴ N² = 5
so, x(n) is periodic
N = LCM ( 5, 20 )
Answer:
,
, ![\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1 \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdx%7D%20%3D%20-v_%7Bin%7D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%20%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D%20-1%20%5Cright%29%20%5Ccdot%20x%20%5Cright%5D%5E%7B-2%7D)
Explanation:
Let suppose that fluid is incompressible and diffuser works at steady state. A diffuser reduces velocity at the expense of pressure, which can be modelled by using the Principle of Mass Conservation:




The following relation are found:

The new relationship is determined by means of linear interpolation:


After some algebraic manipulation, the following for the velocity as a function of position is obtained hereafter:


![v (x) = v_{in}\cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}}-1 \right)\cdot x \right]^{-1}](https://tex.z-dn.net/?f=v%20%28x%29%20%3D%20v_%7Bin%7D%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%5Ccdot%20x%20%5Cright%5D%5E%7B-1%7D)
The acceleration can be calculated by using the following derivative:

The derivative of the velocity in terms of position is:
![\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1 \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdx%7D%20%3D%20-v_%7Bin%7D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%20%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D%20-1%20%5Cright%29%20%5Ccdot%20x%20%5Cright%5D%5E%7B-2%7D)
The expression for acceleration is derived by replacing each variable and simplifying the resultant formula.