True I think I’m not sure?
Answer:
Check the explanation
Explanation:
Code
.ORIG x4000
;load index
LD R1, IND
;increment R1
ADD R1, R1, #1
;store it in ind
ST R1, IND
;Loop to fill the remaining array
TEST LD R1, IND
;load 10
LD R2, NUM
;find tw0\'s complement
NOT R2, R2
ADD R2, R2, #1
;(IND-NUM)
ADD R1, R1, R2
;check (IND-NUM)>=0
BRzp GETELEM
;Get array base
LEA R0, ARRAY
;load index
LD R1, IND
;increment index
ADD R0, R0, R1
;store value in array
STR R1, R0,#0
;increment part
INCR
;Increment index
ADD R1, R1, #1
;store it in index
ST R1, IND
;go to test
BR TEST
;get the 6 in R2
;load base address
GETELEM LEA R0, ARRAY
;Set R1=0
AND R1, R1,#0
;Add R1 with 6
ADD R1, R1, #6
;Get the address
ADD R0, R0, R1
;Load the 6th element into R2
LDR R2, R0,#0
;Display array contents
PRINT
;set R1 = 0
AND R1, R1, #0
;Loop
;Get index
TOP ST R1, IND
;Load num
LD R3,NUM
;Find 2\'s complement
NOT R3, R3
ADD R3, R3,#1
;Find (IND-NUM)
ADD R1, R1,R3
;repeat until (IND-NUM)>=0
BRzp DONE
;load array address
LEA R0, ARRAY
;load index
LD R1, IND
;find address
ADD R3, R0, R1
;load value
LDR R1, R3,#0
;load 0x0030
LD R3, HEX
;convert value to hexadecimal
ADD R0, R1, R3
;display number
OUT
;GEt index
LD R1, IND
;increment index
ADD R1, R1, #1
;go to top
BR TOP
;stop
DONE HALT
;declaring variables
;set limit
NUM .FILL 10
;create array
ARRAY .BLKW 10 #0
;variable for index
IND .FILL 0
;hexadecimal value
HEX .FILL x0030
;stop
.END
Answer:
<em> - 14.943 W/m^2K ( negative sign indicates cooling ) </em>
Explanation:
Given data:
Area of FPC = 4 m^2
temp of water = 60°C
flow rate = 0.06 l/s
ambient temperature = 8°C
exit temperature = 49°C
<u>Calculate the overall heat loss coefficient </u>
Note : heat lost by water = heat loss through convection
m*Cp*dT = h*A * ( T - To )
∴ dT / T - To = h*A / m*Cp ( integrate the relation )
In (
) = h* 4 / ( 0.06 * 10^-3 * 1000 * 4180 )
In ( 41 / 52 ) = 0.0159*h
hence h = - 0.2376 / 0.0159
= - 14.943 W/m^2K ( heat loss coefficient )
Answer:

Explanation:
From the question we are told that:
Thickness 
Internal Pressure
Shear stress 
Elastic modulus 
Generally the equation for shear stress is mathematically given by

Where
r_i=internal Radius
Therefore


Generally



Generally the equation for outer diameter is mathematically given by


Therefore
Assuming that the thin cylinder is subjected to integral Pressure
Outer Diameter is
