Answer:
import java.util.Scanner;
public class FindMatchValue {
public static void main (String [] args) {
Scanner scnr = new Scanner(System.in);
final int NUM_VALS = 4;
int[] userValues = new int[NUM_VALS];
int i;
int matchValue;
int numMatches = -99; // Assign numMatches with 0 before your for loop
matchValue = scnr.nextInt();
for (i = 0; i < userValues.length; ++i) {
userValues[i] = scnr.nextInt();
}
/* Your solution goes here */
numMatches = 0;
for (i = 0; i < userValues.length; ++i) {
if(userValues[i] == matchValue) {
numMatches++;
}
}
System.out.println("matchValue: " + matchValue + ", numMatches: " + numMatches);
}
}
Answer:
The fluid level difference in the manometer arm = 22.56 ft.
Explanation:
Assumption: The fluid in the manometer is incompressible, that is, its density is constant.
The fluid level difference between the two arms of the manometer gives the gage pressure of the air in the tank.
And P(gage) = ρgh
ρ = density of the manometer fluid = 60 lbm/ft³
g = acceleration due to gravity = 32.2 ft/s²
ρg = 60 × 32.2 = 1932 lbm/ft²s²
ρg = 1932 lbm/ft²s² × 1lbf.s²/32.2lbm.ft = 60 lbf/ft³
h = fluid level difference between the two arms of the manometer = ?
P(gage) = 9.4 psig = 9.4 × 144 = 1353.6 lbf/ft²
1353.6 = ρg × h = 60 lbf/ft³ × h
h = 1353.6/60 = 22.56 ft
A diagrammatic representation of this setup is presented in the attached image.
Hope this helps!
Senors are a type of device that produce a amount of change to the output to a known input stimulus.
Input signals are signals that receive data by the system and outputs the ones who are sent from it. Hope this helps ;)
Answer: l = 2142.8575 ft
v = 193.99 ft/min.
Explanation:
Given data:
Thickness of the slab = 3in
Length of the slab = 15ft
Width of the slab = 10in
Speed of the slab = 40ft/min
Solution:
a. After three phase
three phase = (0.2)(0.2)(0.2)(3.0)
= 0.024in.
wf = (1.03)(1.03)(1.03)(10.0)
= 10.927 in.
Using constant volume formula
= (3.0)(10.0)(15 x 15) = (0.024)(10.927)Lf
Lf = (3.0)(10.0)(15 x 15)/(0.024)(10.927)
= 6750 /0.2625
= 25714.28in = 2142.8575 ft
b.
vf = (0.2 x 0.2 x 3.0)(1.03 x 1.03 x 10.0)(40)/(0.024)(10.927)
= (0.12)(424.36)/0.2625
= 50.9232/0.2625
= 193.99 ft/min.