1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Usimov [2.4K]
3 years ago
5

For the speed equation along centerline of a diffuser, calculate the fluid acceleration along the diffuser centerline as a funct

ion of x and the given parameters. For L = 1.56 m, uentrance = 24.5 m/s, and uexit = 17.5 m/s, calculate the acceleration at x = 0 and x = 1.0 m.
Engineering
2 answers:
Marrrta [24]3 years ago
8 0

Answer:

a = v\cdot \frac{dv}{dx}, v (x) = v_{in}\cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}}-1  \right)\cdot x \right]^{-1}, \frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1  \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}

Explanation:

Let suppose that fluid is incompressible and diffuser works at steady state. A diffuser reduces velocity at the expense of pressure, which can be modelled by using the Principle of Mass Conservation:

\dot m_{in} - \dot m_{out} = 0

\dot m_{in} = \dot m_{out}

\dot V_{in} = \dot V_{out}

v_{in} \cdot A_{in} = v_{out}\cdot A_{out}

The following relation are found:

\frac{v_{out}}{v_{in}} = \frac{A_{in}}{A_{out}}

The new relationship is determined by means of linear interpolation:

A (x) = A_{in} +\frac{A_{out}-A_{in}}{L}\cdot x

\frac{A(x)}{A_{in}} = 1 + \left(\frac{1}{L}\right)\cdot \left( \frac{A_{out}}{A_{in}}-1\right)\cdot x

After some algebraic manipulation, the following for the velocity as a function of position is obtained hereafter:

\frac{v_{in}}{v(x)} = 1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}}-1\right) \cdot x

v(x) = \frac{v_{in}}{1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}}-1  \right)\cdot x}

v (x) = v_{in}\cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}}-1  \right)\cdot x \right]^{-1}

The acceleration can be calculated by using the following derivative:

a = v\cdot \frac{dv}{dx}

The derivative of the velocity in terms of position is:

\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1  \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}

The expression for acceleration is derived by replacing each variable and simplifying the resultant formula.

VARVARA [1.3K]3 years ago
8 0

Answer:

At x = 0, acceleration = 0

At x = 1.0, Acceleration = - 124.08m/s²

Explanation:

Given Data;

L = 1.56m

Entrance (u)= 24.5m/s

exit (u) = 17.5m/s

x = 1.0m

The speed along the centreline of a diffuser is given as;

u =u entry + ((u exit - u entry)x²)/L²-------------------------1

For acceleration in the x-direction, we have

ax = udu/dx + vdu/dy + wdu/dz + du/dt ------------------2

Since it's one dimensional flow, equation 2 reduces to

ax = udu/dx -----------------------------------3

substituting equation 1 into equation 3, we have

ax =  2Uentry (Uexit - Uentry)x/L² + 2(Uexit - Uentry)²*x³/L⁴  ---4

At x = 0, substituting into equation 4, we have

a(0) = 2uentry(uexit-uentry) (0)/L² + 2 (uexit - u entry)²(0)³/L⁴

a(0) = 0

At x = 1.0m, equation 4 becomes

a(1) = 2 *24.5(17.5 -24.5)(1)/1.56² + 2(17.5-24.5)²(1)³/1.56⁴

     =( 49 * -2.87) + 16.547

     = -140.63

    = - 124.08m/s²

You might be interested in
X+3=2<br>x=??<br><br><br><br>No spamming​
PtichkaEL [24]

Answer:

x+3=2

x=2-3꧁

꧁꧁꧂꧂꧂꧂

x=-1

4 0
3 years ago
Showing all of your work and algebra,generate an approximate expression for T as a function ofthe other variables. (b) Explain w
shusha [124]

Answer:

Following the ways of dealing with incomplete questions, i was able to get the complete question, please look at the attachment for ans.

5 0
3 years ago
How many GT2RS cars were made in 2019
labwork [276]

Answer:

1000

Explanation:

3 0
3 years ago
Read 2 more answers
Gas chromatography separates compounds depending on their__________ . Benzene, m-xylene, and toluene have similar_________ , the
amm1812

Answer and Explanation:

Gas chromatography separates compounds depending on their **polarity and volatility**. Benzene, m-xylene, and toluene have similar **polarities**, therefore, the main basis for separation is **volatility**. The more volatile a component the ** higher its vapor pressure**, hence the more time it spends in the **gaseous mobile phase**, giving it a **shorter** retention time. Therefore, components of a liquid mixture will elute in order of **increasing boiling points/decreasing volatilities/increasing polarities with the stationary phase**.

3 0
3 years ago
11) If the evaporating pressure was 76 psig for r-22and the compressor inlet temperature was 65f, what would be the total superh
Karolina [17]
Saturated Pressure Temperature chart for R-22 shows 45 degF at 76 psig
65-45= 20 degF superheat



7 0
2 years ago
Other questions:
  • Air flows through a device such that the stagnation pressure is 0.4 MPa, the stagnation temperature is 400°C, and the velocity i
    8·1 answer
  • Kirchoff's Law states that, by the time current has returned to its source, all
    13·2 answers
  • ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
    9·1 answer
  • Generally natural shape of stone is in shaped as (a)angular (b)irregular (c)cubical cone shape (d)regular
    10·2 answers
  • John Locke believed that:
    6·1 answer
  • You apply a force of 19 lbs on to the end of a lever to lift a crate. The resistance of the load is 106 lbs. Calculate the
    13·1 answer
  • (4 points) What field of work generally requires (a) an engineer to have a Professional Engineer
    11·1 answer
  • What car has autopilot?
    14·2 answers
  • The following two DC motors are to be compared for certain application:
    13·1 answer
  • A furniture manufacturer purchases a drill press machine enabled with 5G and edge computing capabilities to keep the machine ope
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!