B. 11,540
<h3>Further explanation
</h3>
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually radioactive elements have an unstable atomic nucleus.
General formulas used in decay:

T = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Nt=25 g
No=100 g
t1/2=5770 years

POH = - log [ OH⁻ ]
pOH = - log [ 1 x 10⁻⁹ ]
pOH = 9
Answer C
hope this helps!
Answer:
The covalent bond in Cl₂ is break and combine with sodium to form NaCl through ionic bond.
Explanation:
Chemical equation:
Na + Cl₂ → NaCl
Balanced chemical equation:
2Na + Cl₂ → 2NaCl
The given reaction indicate the formation of sodium chloride.
Sodium chloride is an ionic compound. It is formed by the reaction of chlorine and sodium. The type of bond in Cl₂ is covalent. Both chlorine atoms are tightly held together through sharing of electrons. When sodium chloride is formed the covalent between the chlorine atoms are break and it react with sodium . The chlorine toms thus gain the one electron from the sodium atom and became negative ion while sodium by losing its one valance electrons became positive ions. The strong electrostatic forces are develop between them and ionic bond is formed.
The grams of FeO that would be needed to make 234.2 grams of Fe is
1204.42 grams
<u><em> calculation</em></u>
4 FeO → Fe₃O₄ +Fe
Step 1: find the moles of fe
moles = mass /molar mass
from periodic table the molar mass of Fe = 56 g/mol
moles = 234.2 g/56 g/mol = 4.182 moles
Step 2: use the mole ratio to determine the moles of FeO
FeO: Fe is 4:1 therefore the moles of FeO =4.182 moles x4 =16.728 moles
Step 3: find the mass of FeO
mass = moles x molar mass
The molar mass of FeO = 56 +16 = 72 g /mol
mass = 16.728 moles x 72 g/mol= 1204.42 grams