Mn metal can be used as a sacrificial electrode to prevent the rusting of an iron pipe. So, the correct option is (c) Mn.
Commonly, sacrificial electrodes are employed to stop another metal from corroding or oxidising. A metal that is more reactive than the metal being shielded must serve as the sacrificial electrode. Magnesium, aluminium, and zinc are the three metals most frequently used in sacrificial anodes.
Manganese-Magnesium (Mn-Mg) electrode is more suited for on-shore pipelines where the electrolyte (soil or water) resistivity is higher since it has the highest negative electropotential of the three. In order to replenish any electrons that could have been lost during the oxidation of the shielded metal, the highly active metal offers its electrons.
Therefore, Mn metal can be used as a sacrificial electrode to prevent the rusting of an iron pipe. So, the correct option is (c) Mn.
Learn more about electrode here:
brainly.com/question/17060277
#SPJ4
The rate law depicts the effect of concentration on reaction rate. Second mechanism 2NO(g) ⇄ N₂O₂(g) [fast], N₂O₂(g) + O₂(g) → 2NO₂(g) [slow] is most reasonable. Thus, option b is correct.
<h3>What is rate law?</h3>
Rate law and equation give the rate at which the reaction takes place under the influence of the concentration of the reactants. The balanced chemical reaction is given as,
2NO(g) + O₂(g) → 2NO₂(g)
The rate of the equation is given as,
rate = k [NO]² [O₂]
In a multi-step chemical reaction, the slowest step is the rate-determining step. The second mechanism is given as,
2NO (g) → N₂O₂ (g) [fast]
N₂O₂(g) +O₂(g) → 2NO₂ (g) [slow]
Rate is given as,
rate = k [N₂O₂] [O₂]
Therefore, option b. the second mechanism is the most reasonable.
Learn more about rate law, here:
brainly.com/question/14779101
#SPJ4
Answer: gas molecules will hit the container walls more frequently and with greater force
Explanation:
According to the postulates of kinetic molecular theory:
1. The pressure exerted by a gas in a container results from collisions between the gas molecules and the container walls.
2. The average kinetic energy of the gas molecules is proportional to the kelvin temperature of the gas.
When the temperature is increased, so the average kinetic energy and the rms speed also increase. This means that the gas molecules will hit the container walls more frequently and with greater force because they are all moving faster. This increase the pressure.
Answer:
4.) 9, 1, and 4 5.) 4, 1, and 4
Explanation:
I am not quite sure about this because I cannot remember if the coefficient (the number before the elements) is applied to every element in the compound. If it is then your number of atoms are as follows: CORRECTION: you do not have to apply the coefficient to every element only the one that is after it. So when you back and fix the error your number of atoms will be as follows:
number 4
H: 9
P: 1
O: 4
number 5:
H: 4
S: 1
O: 4
you can calculate the number of atoms present in this compound by multiplying the coefficient and the subscripts of each atom.
hope this helped you :)
How many grams N2O in 1 mol? The answer is 44.0128. We assume you are converting between grams N2O and mole. You can view more details on each measurement unit: molecular weight of N2O or mol This compound is also known as Nitrous Oxide.