Answer:
4244.48 g to the nearest hundredth.
Explanation:
The molar mass of Glucose = 6*12.011 + 12*1.008+ 6*15.999
= 180.156.
So 23.56 moles = 180.156 * 23.56 = 4244.48 g
Answer:
a) 
b) 
Explanation:
From the question we are told that:
initial Concentration 
Final Concentration 
Final volume needs 
Generally the equation for Volume is mathematically given by




Therefore
The volume of buffer needed is


Answer:
The correct answer is -1085 KJ/mol
Explanation:
To calculate the formation enthalphy of a compound by knowing its lattice energy, you have to draw the Born-Haber cycle step by step until you obtain each element in its gaseous ions. Find attached the correspondent Born-Haber cycle.
In the cycle, Mg(s) is sublimated (ΔHsub= 150 KJ/mol) to Mg(g) and then atoms are ionizated twice (first ionization: ΔH1PI= 735 KJ/mol, second ionization= 1445 KJ/mol) to give the magnesium ions in gaseous state.
By other hand, the covalent bonds in F₂(g) are broken into 2 F(g) (Edis= 154 KJ/mol) and then they are ionizated to give the fluor ions in gaseous state 2 F⁻(g) (2 x ΔHafinity=-328 KJ/mol). The ions together form the solid by lattice energy (ΔElat=-2913 KJ/mol).
The formation enthalphy of MgF₂ is:
ΔHºf= ΔHsub + Edis + ΔH1PI + ΔH2PI + (2 x ΔHaffinity) + ΔElat
ΔHºf= 150 KJ/mol + 154 KJ/mol + 735 KJ/mol + 1445 KJ/mol + (2 x (-328 KJ/mol) + (-2913 KJ/mol).
ΔHºf= -1085 KJ/mol
To convert the given value we need conversion factors to relate molecules to liters. At STP, we know that 1 mol is equal to 22.4 L and by using Avogadro's number we can relate molecules to 1 mol. Calculation is as follows:
5.0x10^24 molecules ( 1
mol / <span>6.022 x 10^23 molecules<span> ) ( 22.4 L / 1 mol) = 186.0 L </span></span>