1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ICE Princess25 [194]
4 years ago
12

The sun emits electromagnetic waves with a power of 4.0 × 10²⁶ W. Determine the intensity of electromagnetic waves from the sun

just outside the atmospheres of (a) Venus, (b) Mars, and (c) Saturn. Refer to the table of astronomical data inside the back cover.
Physics
1 answer:
Sphinxa [80]4 years ago
7 0

Answer:

I_v = 2,700 W / m^2

I_m = 610 W / m^2

I_s = 16 W / m^2

Explanation:

Given:

- The Power of EM waves emitted by Sun P_s = 4.0*10^26 W

- Radius of Venus r_v = 1.08 * 10^11 m

- Radius of Mars r_m = 2.28 * 10^11 m

- Radius of Saturn r_s = 1.43 * 10^12 m

Find:

Determine the intensity of electromagnetic waves from the sun just outside the atmospheres of (a) Venus, (b) Mars, and (c) Saturn.

Solution:

- We know that Power is related to intensity and surface area of an object follows:

                                        I = P / 4*pi*r^2

Where, A is the surface area of a sphere models the atmosphere around the planets.

a)

- The intensity at the surface of Venus is calculated as:

                                       I_v = P_s / 4*pi*r^2_v

                                       I_v = 4.0*10^26 / 4*pi*(1.08*10^11)^2

                                       I_v = 2,700 W / m^2

b)

- The intensity at the surface of Mars is calculated as:

                                       I_m = P_s / 4*pi*r^2_m

                                       I_m = 4.0*10^26 / 4*pi*(2.28*10^11)^2

                                      I_m = 610 W / m^2

c)

- The intensity at the surface of Saturn is calculated as:

                                       I_s = P_s / 4*pi*r^2_s

                                       I_s = 4.0*10^26 / 4*pi*(1.43*10^12)^2

                                      I_s = 16 W / m^2

You might be interested in
Rory uses a force of 25 N to lift her grocery bag while doing 50 J of work. How far did she lift the
Dennis_Churaev [7]

Answer:

W=Fd \\ 50 = 25d \\ d =  \frac{50}{25}  \\  \color{yellow} \boxed{d = 2m}

8 0
3 years ago
Small, slowly moving spherical particles experience a drag force given by Stokes' law: Fd = 6πηrv where r is the radius of the p
Dominik [7]

Answer:

Explanation:

At the time of a body achieving terminal velocity, the drag force becomes equal to the weight of the body less the buoyant force by the surrounding medium which can be represented by the following equation

\frac{4\pi\times r^3(d-\rho)}{3} =6\pi\times n\times r\times v

Where r is radius of the body , d is density of the material of the body σ is density of the medium and n is coefficient of viscosity of the medium and v is terminal velocity.

Simplifying

v = \frac{2\times r^2(d-\rho)}{9\times n}

Assuming the value of density of air as 1.225 kg/m³ and putting other given values in the formula we get

v = [tex]\frac{2\times (1.2\times10^{-5})^2(2182-1.225)}{9\times 1.8\times10^{-5}}[/tex]

v = 387 x 10⁻⁵ m/s

Terminal velocity = 387 x 10⁻⁵ m/s

Time taken to fall a distance of 100 m

= \frac{100}{387\times10^{-5}}

= 2.6 x 10⁴ s.

5 0
3 years ago
I meed help with these 2 questions plz
ludmilkaskok [199]

-- 30N

-- the sum of all the forces

4 0
3 years ago
Consider a car travelling at 60 km/hr. If the radius of a tire is 25 cm, calculate the angular speed of a point on the outer edg
vlabodo [156]

To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.

From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

\omega = \frac{v}{R}

Where,

\omega =Angular velocity

v = Lineal Velocity

R = Radius

At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

\alpha = \frac{\omega}{t}

Where

\alpha =Angular acceleration

\omega = Angular velocity

t = Time

Our values are

v = 60\frac{km}{h} (\frac{1h}{3600s})(\frac{1000m}{1km})

v = 16.67m/s

r = 0.25m

t=6s

Replacing at the previous equation we have that the angular velocity is

\omega = \frac{v}{R}

\omega = \frac{ 16.67}{0.25}

\omega = 66.67rad/s

Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s

At the same time the angular acceleration would be

\alpha = \frac{\omega}{t}

\alpha = \frac{66.67}{6}

\alpha = 11.11rad/s^2

Therefore the angular acceleration of a point on the outer edge of the tires is 11.11rad/s^2

5 0
3 years ago
According to newton's third law of motion, when a hammer strikes and exerts force to push it into a piece of wood, the nail
Darya [45]
According to newton's third law of motion, when a hammer strikes and exerts force to push it into a piece of wood, the nail <span>C. exerts an equal or opposite force on the hammer. The third law of motion states that every action has an equal BUT opposite reaction. This means that the nail exerts the same force the hammer exerts on it.</span>
6 0
4 years ago
Read 2 more answers
Other questions:
  • What is the fundamental source of all energy in the universe
    11·1 answer
  • Aray diagram is shown.<br> What does the letter red line represent?
    13·1 answer
  • Assume that a machine puts out 8000 joules of work when the user puts in 10,000 joules of work. What is the efficiency of the ma
    15·1 answer
  • An athlete rotates a 1.00-kg discus along a circular path of radius 1.09 m. The maximum speed of the discus is 17.0 m/s. Determi
    7·1 answer
  • If a 2-kg ball is thrown through the air at 20 m/s what is the momentum of the ball?
    14·1 answer
  • Can you find a vector quantity that has a magnitude of zero but components that are not zero? Explain. Can the magnitude of a ve
    7·1 answer
  • What is a dependent variable
    12·2 answers
  • 4. Density is a property of all matter.
    7·1 answer
  • 8. Where are the ribosomes usually located in plant and animal cells?
    6·1 answer
  • Which best describes a wave?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!