We know that P1V1 = P2V2, if there is a constant pressure, then the P1 and P2 can cancel out, so it is V1=V2 that is whats left.
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
Answer: 0
Explanation:
75 newtons will push back canceling it out make it 0
A bowler who always left the same 3 pins standing could be considered a C. Precise bowler as from bowling countless number of times he has observed the same amount of pins knocked down each time.
Answer:
The coupled velocity of both the blocks is 1.92 m/s.
Explanation:
Given that,
Mass of block A, 
Initial speed of block A, 
Mass of block B, 
Initial speed of block B, 
It is mentioned that if the two blocks couple together after collision. We need to find the common velocity immediately after collision. We know that due to coupling, it becomes the case of inelastic collision. Using the conservation of linear momentum. Let V is the coupled velocity of both the blocks. So,

So, the coupled velocity of both the blocks is 1.92 m/s. Hence, this is the required solution.