1. If we increase the distance to twice it's original value, the light intensity is reduced by one-fourth, the light intensity would be:
I0/4
2. rms magnetic field is inversely proportional to distance, so the new rms magnetic field would be:
B0/2
3. average energy density is inversely proportional to the square of the distance, so the new average energy density is:
E0/4
We will apply the concept of period in a pendulum, defined as the product between 2
by the square root of the length over gravity, this is mathematically

Here,
T = Period
L = Length
g = Acceleration due to gravity
For the period to be 1 second, then we must look for the necessary length for such a requirement so




The meter's length would be slight less than one-fourth of its current length. Also, the number of significant digits depends only on how precisely we know g, because the time has been defined to be exactly 1s.
Therefore the correct answer is C.
Answer:
<em>The cyclist is traveling at 130 m/s</em>
Explanation:
<u>Constant Acceleration Motion
</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, the following relation applies:

The cyclist initially travels at 10 /s and it's accelerating at a=6m/s^2. We need to know the new speed when t= 20 seconds have passed.
Apply the above equation:



The cyclist is traveling at 130 m/s