Here is the full information about the question. <span>Ilya and Anya each can run at a speed of 8.50mph and walk at a speed of 3.50 mph . They set off together on a route of length 5.00 miles . Anya walks half of the distance and runs the other half, while Ilya walks half of the time and runs the other half.
the calculation would be:
</span><span>
t = d / s </span>
<span>t = 2.5 (half of the total distance) / 8.5 (speed of running) </span>
<span>This is .294 hours which is about 1058s... </span>
<span>for the walking part... </span>
<span>t = d / s </span>
<span>t = 2.5 / 3.5 </span>
<span>t = 5/7hours = 2571 s. </span>
The Asthenosphere is where the convection currents in the Earth occor
Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
13-16 that is where they’re located at