Answer:
(A) 9.5 m/s
(B) 5.225 m
Explanation:
vertical height (h) = 4.7 m
horizontal distance (d) = 9.3 m
acceleration due to gravity (g) = 9.8 m/s^{2}
initial speed of the fish (u) = 0 m/s
(A) what is the pelicans initial speed ?
- lets first calculate the time it took the fish to fall
s = ut + 
since u = 0
s = 
t =
where a = acceleration due to gravity and s = vertical height
t =
= 0.98 s
- pelicans initial speed = speed of the fish
speed of the fish = distance / time = 9.3 / 0.98 = 9.5 m/s
initial speed of the pelican = 9.5 m/s
(B) If the pelican was traveling at the same speed but was only 1.5 m above the water, how far would the fish travel horizontally before hitting the water below?
vertical height = 1.5 m
pelican's speed = 9.5 m/s
- lets also calculate the time it will take the fish to fall
s = ut + 
since u = 0
s = 
t =
where a = acceleration due to gravity and s = vertical height
t =
= 0.55 s
distance traveled by the fish = speed x time = 9.5 x 0.55 = 5.225 m
GPE = 78,380 J
w = 39,240 N
First list what you know. You know the elephants mass and it’s height. You also know gravity on Earth. I will use g = 9.81.
m = 4,000 kg
h = 20 m
g = 9.81 m/s^2
You need to find the elephants weight. Weight = mass x gravity
w = mg
w = (4000 kg)(9.81 m/s^2)
w = 39,240 N (N = newtons)
Now, knowing the elephants weight, you can calculate its GPE.
Gravitational Potential Energy = weight x height
GPE = wh
GPE = (39,240N)(20m)
GPE = 78,380 J (J = joules)
This would be the definition of a resistor. These components inhibit or “resist” the flow of a current.
Hope this helps!