To solve this problem we will apply the concepts related to the calculation of the surface, volume and error through the differentiation of the formulas given for the calculation of these values in a circle. Our values given at the beginning are


The radius then would be

And

PART A ) For the Surface Area we have that,

Deriving we have that the change in the Area is equivalent to the maximum error, therefore

Maximum error:


The relative error is that between the value of the Area and the maximum error, therefore:


PART B) For the volume we repeat the same process but now with the formula for the calculation of the volume in a sphere, so


Therefore the Maximum Error would be,



Replacing the value for the radius


And the relative Error



To solve this problem we will apply the principle of conservation of energy and the definition of kinematic energy as half the product between mass and squared velocity. So,


Here,
m = Mass
V = Velocity
Replacing,


Therefore the final kinetic energy of the two car system is 72.6kJ
the Orbital Velocity is the velocity sufficient to cause a natural or artificial satellite to remain in orbit. Inertia of the moving body tends to make it move on in a straight line, while gravitational force tends to pull it down. The orbital path, elliptical or circular, representing a balance between gravity and inertia, and it follows a rue that states that the more massive the body at the centre of attraction is, the higher is the orbital velocity for a particular altitude or distance.
Answer:
By conservation of energy, it can climb up to a height equal to that it went down before. However, due to the friction in the machines, the total mechanical energy of the roller coaster will decrease. As a result, the first "hill" of many roller coasters are the highest, but the followings will have decreasing heights.
Explanation: