Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
It Increases. I just took a quiz with the same question.
Answer:
R = 715.4 N
L = 166.6 N
Explanation:
ASSUME the painter is standing right of center
Let L be the left rope tension
Let R be the right rope tension
Sum moments about the left end to zero. Assume CCW moment is positive
R[5] - 20(9.8)[5/2] - 70(9.8)[5/2 + 2] = 0
R = 715.4 N
Sum moments about the right end to zero
20(9.8)[5/2] + 70(9.8)[5/2 - 2] - L[5] = 0
L = 166.6 N
We can verify by summing vertical forces
116.6 + 715.4 - (70 + 20)(9.8) ?=? 0
0 = 0 checks
If the assumption about which side of center the paint stood is incorrect, the only difference would be the values of L and R would be swapped.
F=ma
8480=26.5m
m=8480/26.5
m=320
The mass of the cart is 320kg.
Answer:
True
Explanation:
If it is at right conditions and correct time (night time most likely) they will all be visible