Answer:
The length of the trail = 22796 ft
Explanation:
From the ΔABC
AC = length of the trail = x
AB = 6100 - 600 = 5500 ft
Angle of inclination
= 15°



x = 22796 ft
Since x = AC = Length of the trail.
Therefore the length of the trail = 22796 ft
I think the correct answer from the choices listed above is the second option. The <span> idea of plate tectonics was difficult for many scientists to accept for many years after it was first introduced because there </span><span>was no explanation yet for how it was happening. It was only to the recent times that these were proven. </span>
Answer: Stationary or constant velocity
Explanation:
Objects with balanced forces acting on them experience no change in motion, or no acceleration. So these objects could either be stationary at rest or have a constant velocity. These include a hanging object, a floating object, an object on a table that doesn't move, and a car moving at a constant 10 mph
Answer:
<h2>a) 50°</h2><h2>b) 40°</h2>
Explanation:
Check the complete diagram n the attachment below
a) The angle of incidence on a plane surface is the angle between the incidence ray and the normal ray acting on a plane surface. The normal ray is the ray perpendicular to the surface while the incidence ray is the ray striking a plane surface.
According to the diagram, the angle of reflection r₂ on M₂ is 90°-g where g is the angle of glance.
Given angle of glance on M₂ to be 40°, r₂ = 90-40 = 50°
According the second law of reflection, the angle of incidence = angle of reflection, therefore i₂ = r₂ = 50° (on M₂)
Also ∠OO₂O₁ = ∠OO₁O₂ = 40° (angle of glance on M₁){alternate angle}
The angle of incidence on M₁ = 90° - 40° = 50°
b) The angle of incidence to the surface of M₁(∠PO₁A)will be the angle of glance on M₁ which is equivalent to 40°
Answer:
A
Explanation:
E. An ocean wave moving through water is an example of a mechanical wave
e.g sound waves wave on a rope or string
and Ans a is also correct